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Abstract

The two prominent safety rating agencies evaluate their frontal crash tests uncon-
ditional on vehicle weight. Their in-lab, controlled crashes largely resemble collisions
between two equal sized vehicles. However, it has been well-documented that a larger
vehicle is objectively safer in a two-car collision, while imposing additional harm to
drivers of smaller vehicles. This paper estimates the social benefits of a ratings regime
which neglects the role of weight in its safety evaluations. We compare the current
methodology to one incorporating relative weight by estimating the marginal effect of
weight on vehicle fatalities and mapping those effects into a re-calibrated safety rating.
For identification, we exploit underlying, in-lab crash metrics determining the rating
to measure both the reduction in fatality risk, and to isolate a demand response to the
rating. Counterfactual calculations demonstrate that incorporating the role of weight
into safety ratings increase the demand for trucks and SUVs by 2.6%, potentially ex-
acerbating an arms race in vehicle size.
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1 Introduction

It has been well-established that consumers have a strong preference for large vehicles, hold-

ing other characteristics constant. These preferences generally arise from a demand for

additional capacity or cargo space, but prior studies have also demonstrated the role safety

plays in the demand for increased vehicle size (e.g., Li, 2012; Scott, 2022). Heavier vehicles

have been empirically shown to mitigate much of the damages incurred in vehicle accidents.

However, while safer to the drivers of these vehicles, larger cars have also been associated

with higher emissions levels, degradation of public roads, as well as an increased risk to

others when involved in a car accident.

There is an extensive literature on the external cost of heavier vehicles on the road and the

behavior that produces these externalities. Scott (2022) provides evidence that consumers

internalize vehicle size as a safety attribute by examining the purchasing behavior of con-

sumers following information of a nearby neighbor’s involvement in a fatal car accident.

Anderson and Auffhammer (2014) document the external costs of pounds by estimating the

increased fatality risk imposed by heavier vehicles in two-car collisions. Li (2012) examine

consumer preferences for safety directly in the context of vehicle demand. Seminal work of

White (2004) illustrates that consumer preferences for weight as a safety attribute can gen-

erate a vehicle “arms race” on the road; behavior that may generate an inefficiently heavy

vehicle fleet.

The concept of a vehicle arms race describes a prisoners’ dilemma wherein consumers pur-

chase heavier and heavier vehicles to protect themselves against other car on the road. This

behavior has clear implications for safety and produces an inefficient equilibrium, where the

vehicle fleet is much heavier than it otherwise would be. How consumers best respond to

the distribution of vehicle weights on the road is difficult to estimate due to the inherent

endogeneity in choice. Thus, there is very limited evidence that this occurs in practice. In

this paper, we explore an alternative channel to pin down how publicly available information

on safety might contribute to (or mitigate) an arms race.

There are two prominent rating agencies charged with producing information on vehicle
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safety: the National Highway Traffic Safety Administration (NHTSA) and the Insurance

Institute for Highway Safety (IIHS). Ratings are derived from various in-lab crash tests,

estimating the damages incurred through a controlled vehicle accident. By design, both

agencies derive a final safety rating that is independent of a vehicle’s size. While empirical

studies have shown that heavier vehicles are objectively safer, frontal car crash tests are

conducted by driving a vehicle into a wall, an outcome which simulates a two-car collision

between equal sized vehicles. Thus, as currently constructed, ratings provide information on

the safety of a given vehicle, within weight class, and provide little information on the role

of that vehicle’s weight, or other vehicle weights, in real-world accidents. This approach has

clear social efficiency implications.

In this paper, we explore the potential outcome of a counterfactual methodology which

would incorporate information about vehicle weight into the ratings. This approach, ar-

guably, produces a more accurate depiction of risk, but may generate an inefficient response

by consumers who subsequently wish to purchase larger cars. By estimating the response to

these “full-information” safety ratings, we are able to quantify the social benefit of hiding

or, “conditioning out,” the role of weight in reputable sources of information on vehicle safety.

Our empirical approach is two-fold. On the front end, we estimate the consumer response to

safety ratings. We construct a simple vehicle demand model, incorporating IIHS top safety

picks as an additional vehicle attribute. These picks are determined based on 8 unique crash

tests, the crash outcomes translated to a Likert scale describing the vehicle’s performance

(i.e., from poor, marginal, acceptable, and good). While salient information of an IIHS top

pick may be correlated with other vehicle characteristics, the criteria for choosing a top pick

changes yearly, and should be orthogonal to other attributes. For example, in one year, a top

pick classification may only require an “acceptable” rating for both crash test 1 and 2, while

in the following year it may require a “good” classification for crash test 1. Our approach

assumes that all confounding factors associated with unobserved vehicle characteristics are

captured by the individual test outcomes, thus, leveraging the remaining variation in the

criteria change to pin down the causal response to a top safety pick. Controlling for model

year and dummies for the individual crash test ratings produces an empirical specification
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similar to a difference-in-differences design.

Of primary interest is the counterfactual demand for a vehicle under an alternative method-

ology which incorporates weight into the safety rating. Thus, following the identification

of key preference parameters, we leverage empirical data on car crashes to recalibrate the

rating. Ultimately, we explore the mechanical relationship between a top safety pick and

fatality risk, then generate a mapping between fatality probabilities and the safety rating.

As we are only interested in the mechanical relationship, the underlying empirical challenge

is the potential selection of drivers of safer vehicles into more dangerous car crashes. To

mitigate this concern, we leverage only information from the 8 individual car crash ratings.

Our approach assumes that the IIHS top pick classification is the only information salient to

the consumers, while the individual crash test outcomes determining the safety designation

are less known. Using the unobserved (to the driver) crash test results in an instrumental

variable design allows us to estimate how much safer the top picks are in traffic accidents.

The traffic fatality risk regression is both a function of the top pick designation and relative

vehicle size—an additional component of risk not accounted for in the crash tests. To miti-

gate potential selection concerns related to vehicle size, we follow Anderson and Auffhammer

(2014) and estimate the role of relative weight on the sample of two-car collisions, where

the assignment of the “opposing” vehicle in the accident is assumed exogenous. Given the

estimated effects of top picks and vehicle size on fatality risk, we are then able to perform a

simple inversion to incorporate relative vehicle weight into a counterfactual safety rating.

Our results illustrate the manner in which demand for weight may be exogenously impacted

through external information on vehicle safety. Under our recalibrated ratings, 13 percent of

vehicles in our sample flip from a non-safety pick to a top safety pick, or vice versa, depend-

ing on vehicle weight. However, as our recalibration generates a continuous measure of a top

pick assignment, all ratings differ to some extent depending on relative weight. This new

ratings system significantly increases preferences for heavy vehicles. Given the estimated,

baseline marginal demand for weight arising from other factors, our results show a 10 to 13

percent increase in implied preferences for weight after the ratings adjustment. This further
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translates into a 2 and 6 percent increase in demand for SUVs and light trucks, respectively.

Given the well-known negative externalities generated from large vehicles, our findings high-

light the potential for ratings agencies to mitigate a vehicle arms race by excluding relevant

information on weight from its safety evaluations.

The conventional view is that heavier vehicles provide more safety when experiencing an acci-

dent (Crandall and Graham, 1989; Van Auken and Zellner, 2005; Anderson, 2008). However,

consumers who invest in their safety by purchasing pickup trucks and SUVs create an in-

creased risk on the road to other drivers. It is well-established that heavy vehicles create

a higher risk of fatality to the opposing driver when involved in a two-car accident. For

example, Jacobsen (2013) finds that a 1,000 pound increase in the weight of a vehicle in-

volved in an accident increases the number of fatalities in other vehicles by about 46 percent.

Anderson and Auffhammer (2014) find, conditional on the occurrence of an accident, a 1,000

pound increase in vehicle weight is associated with a 47 percent increase in the baseline

fatality probability. Evans (2001) finds that the effects of adding mass in the form of a

passenger adds to the increased risk of fatality in head-on collisions. He finds that adding a

passenger to a car leads to a 7.5 percent reduction in driver’s risk of fatality, while increasing

the risk of fatality to the other driver by 8.1 percent. Bento, Gillingham, and Roth (2017)

further examine the relationship between weight dispersion and fatalities in accidents, but

in the context of the Corporate Average Fuel Efficiency (CAFE) standards. They find that,

though CAFE increased the national fleet’s weight dispersion, the resulting decrease in av-

erage weight has produced an overall reduction in fatalities.

To our knowledge, this is the first paper illustrating the role of full information in safety

ratings on an arms race effect. Our counterfactual results hold the direct response to weight

constant, while exploring the effects of weight through the safety ratings channel. When

ratings are updated periodically, only the heaviest vehicles will be designated a top pick,

holding other factors constant. This generates a feedback loop with inefficient outcomes.

Our results suggest large efficiency gains from hiding information on weight, a current prac-

tice which potentially dampens the effect of a vehicle arms race.
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The paper proceeds as follows. Section 2 provides an overview of data sources used in our

analysis. Section 3 describes our empirical strategy. Section 4 presents our main findings.

Section 5 concludes the paper with a brief discussion of the implications of our results.

2 Data

In this section, we review the primary data sources used in our analysis. These include safety

ratings information, new vehicle sales, and traffic accidents. We describe these data sources

in detail below.

2.1 Safety Ratings

There are two primary vehicle characteristics of interest in this paper: weight and safety

ratings. These attributes are used both in a demand framework and to estimate their role

in traffic fatalities. This section discusses the safety ratings used in the paper.

Historically, two prominent ratings agencies represent the dominant sources of information

on vehicle safety; each agency deriving their safety ratings through in-lab crash tests. The

National Highway Traffic Safety Administration (NHTSA) conducts periodic safety testing

on various models and publishes their ratings on their website.1 There are several limitations

to these data, however. NHTSA crash tests are not universally conducted across all vehicle

models due to excessive costs. Further, the vehicle models which do have ratings available

are only tested on particular model years. This leaves many gaps in the data in which a

safety rating for a given make-model-year may not be observed.

Given these limitations, we conduct our analysis using crash ratings published by the Insur-

ance Institute for Highway Safety (IIHS), whose breadth and frequency of testing generally

surpasses that of NHTSA. There are many similarities in the testing methodologies between

IIHS and NHTSA. For example, each agency produces their ratings on a scale which may

only be interpreted within a given weight class. On their website, NHTSA offers the dis-

claimer: “Overall Vehicle Scores can only be compared to other vehicles in the same class

and whose weight is plus or minus 250 pounds of the vehicle being rated.” The reason is

due to the controlled design of the crash tests, which explicitly hold weight constant. IIHS

1nhtsa.gov/ratings
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describes their frontal crash tests as one that simulates a collision between two vehicles of

equal size: “The forces in the test are similar to those that would result from a frontal

offset crash between two vehicles of the same weight, each going just under 40 mph.” These

“weightless” safety ratings motivate our research question.

The IIHS was established in 1959 by three leading insurance associations that collectively

represented 80 percent of the U.S. auto insurance market. The nonprofit agency produces

annual publications, awarding the best performing vehicles IIHS “top” and “top plus” safety

picks. The information is widely publicized, often cited in manufacturer marketing cam-

paigns when awarded top pick status. Still, we acknowledge that this is only one source of

information on safety available to consumers and, thus, the results of this paper should be in-

terpreted through the lens of IIHS ratings, rather than a combination of all available sources.

The IIHS awards are the result of several tests aimed at estimating a vehicle’s performance

in a car crash. Metrics from each of the 8 tests performed are translated into an individ-

ual score and are used to determine top pick designations. Tests 1-7 are evaluated on the

four categories: “poor”, “marginal”, “acceptable”, “good”. The frontal crash prevention

technology is evaluated in test 8 on, first, its availability and, second, whether the equipped

technology is classified as “basic”, “advanced”, or “superior” according to IIHS metrics. The

thresholds for each of the 8 tests in determining a top pick are revised each year, generating

variation in criteria across model years.

We use the agency’s public API to gather information for each crash test and merge the

data by model to our sales and traffic accidents data. Both the individual crash tests and

the ultimate top pick designations are essential components of our empirical design. The

designation criteria in each model year in our data set are illustrated in Table 1. The iden-

tifying variation comes from the interaction of the results from the 8 primary tests, and the

changes in the thresholds which determine a vehicle’s top pick classification.
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2.2 Vehicle Sales and Characteristics

New vehicle sales make up our main outcome of interest in estimating a vehicle choice

model. The data derive from Texas vehicle registrations from the Department of Motor

Vehicles (DMV), and are reported at the county-month level for the years 2014-2019. For

our analysis, we aggregate sales to the metropolitan statistical area (MSA) level. The choice

of MSA-level sales is chosen as a better representative sample of a market for vehicles; we

observe multiple sales for the vast majority of vehicle models in our sample at this level

of aggregation. Registrations of new vehicles are reported by their unique 17-digit vehicle

identification number (VIN). To obtain the specific characteristics of each vehicle, we make

use of a VIN decoder.

Vehicle characteristics come from DataOne Software, in which we directly join in unique

information on each vehicle based on the 10-digit VIN stub (VIN10). A VIN10 defines a

vehicle up to their make-model-year-trim level, in addition to particlar packages. Our anal-

ysis aggregates vehicles into a make-by-model-by-year-by-fuel type index, as occasionally, a

model will be produced in multiple fuel types. The characteristics of interest are generally

constant within this narrow vehicle description. The main characteristic of interest in this

paper is a vehicle’s weight, as defined by its curb weight.2

Once all characteristics are collected, we combine information on reported initial registration

dates and model year in order to infer new vehicle sales. For this, we assume that a sale

that takes place in a year in or preceding that of the model year is a new vehicle sale.

2.3 Traffic Accidents

A recalibration of the safety ratings to one which accounts for vehicle weight is of primary

interest in this paper. Given the infeasibility of redesigning the crash tests to account for

vehicle relative weights in two-car collisions, we gather this information directly from empir-

ical data on traffic accidents.

Data on traffic accidents are collected from the Texas Department of Transportation’s (Tx-

DOT) Crash Records Information System (CRIS). CRIS is a comprehensive source of all

2The curb weight of a vehicle accounts for all standard components, including a full tank of gas and all
necessary operating fluids.
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reported accidents in Texas, with granular information describing the characteristics of an

accidents at the crash, vehicle, and person level. The main analysis is conducted on the

sample of two-car collisions, in which the VINs of the vehicles involved are the primary

identifiers and allow us to merge together relevant vehicle characteristics.

The primary outcome of interest is a traffic fatality occuring, defined at the vehicle level.

The VIN allows us to merge in any relevant characteristics (including safety ratings). Other

characteristics of the crash such as county, date of crash, and speed limit offer additional

controls.

3 Empirical Strategy

This paper seeks to measure the demand responses to a counterfactual ratings methodology

which incorporates the role that weight plays in vehicle safety. We hypothesize that when

weight is indirectly internalized through this additional channel, a feedback loop is generated

whereby consumers purchase heavier and heavier vehicles; particularly when relative weight

on the road is of significance.

Our empirical methodology consists of two primary components. First we estimate a sim-

ple vehicle demand model, identifying the causal response to IIHS safety ratings. Next, we

recalibrate the historical ratings by incorporating vehicle weight. This requires us to create

a mapping between the crash test data and empirical fatality risk, combining the estimated

effects of weight on crash outcomes.

3.1 Demand Model

We begin with a standard logit model of vehicle choice which includes the IIHS top safety

pick designation as an additional vehicle attribute. For a vehicle model j in model year t,

define the variable topjt as a binary indicator representing the top safety pick designation.

As top picks are likely correlated with other unobserved vehicle characteristics, we control

for a set of dummy variables representing the individual crash test outcomes that determine

the top pick designations. Thus, for an individual crash test indexed by r = 1, ..., 8, we

can describe the crash test outcomes on the set {Poor,Marginal, Acceptable,Good}r=1,...,7,
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for tests 1-7, and the set {NotAvailable, Basic, Advanced, Superior}r=8, for test 8. The

test performance for each vehicle can then be described by the vector of dummy variables

Rrjt = (1poor
rjt ,1marg

rjt ,1acc
rjt ,1

good
rjt ), or R8jt = (1na

8jt,1
basic
8jt ,1adv

8jt ,1
sup
8jt ) for test 8, where 1

k
rjt indi-

cates whether test r produces an outcome of at least a k classification for model j in year t.

Let the full vector of dummy variables across all 8 tests be defined as Rjt = (R1jt, ..., R8jt).

This describes a vehicle’s overall test performance and completely determines its top pick

designation, conditional on the criteria in each model year.

Table 1 describes the relative outcome required in each test to be awarded a top safety pick.

For example, in model year 2018, a top safety pick is defined as topj,2018 = 1
good
1j,2018×1

good
3j,2018×

1
good
4j,2018×1

good
5j,2018×1

good
6j,2018×1acc

7j,2018×1adv
8j,2018. Notice how crash test 2 is not relevant in 2018

and, thus, only the minimum performance (i.e., poor) was required. In contrast to the 2018

criteria, there was no minimum requirement for crash test 7 in 2017 and, in 2019, a top safety

pick required at least an “acceptable” rating for crash test 2. In addition to controlling for

each test separately, to further isolate the interaction between each test, we control for a set

of model year dummies to account for any systematic confounders across years, correlated

with the criteria changes. Our main specification controls for model year-by-city fixed effects.

Our main specification is a standard logit which estimates the marginal effect of top safety

picks on city-level vehicle demand. We estimate the following equation.

log(qcjt) = αtopjt +Xjtβ +RjtΓ + ϕj + λct + εcjt (1)

where the outcome of interest is logged, aggregate quantities of model j in model year t,

purchased in city c. Aggregate city-year purchases in the denominator of market shares are

absorbed into city-by-time fixed effects, λct, and we additionally control for model-specific

fixed effects, j. Γ estimates the reduced-form contributions of each crash test outcome to

aggregate demand and, jointly, RjtΓ absorb potential confounders correlated with safety

performance.

We include various set of vehicle characteristics in Xjt, including vehicle weight. In some

specifications we include vehicle price, identified through conventional instrumental vari-
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able approaches used in demand estimation (Berry, Levinsohn, and Pakes, 1995). However,

prices are held out of our main specification in order to properly identify the overall, re-

duced form effect of the safety ratings. Since manufacturers likely respond to an increased

demand for vehicles with top safety picks by increasing prices, without a full general equilib-

rium analysis, it is important to exclude prices to account for the net effects of safety ratings.

Finally, α estimates the causal effect of IIHS top pick designations on vehicle demand. Our

identification strategy assumes conditional independence of the top pick designation, where

unobserved vehicle characteristics correlated with the award are captured by a linear set of

dummy variables describing crash performance. When interpreted as market shares, εcjt, is

assumed to be an extreme value type I, logit shock, independent across models in the choice

set.

3.2 Empirical Fatality Risk

The second component of the empirical strategy involves a recalibration of the top safety pick

designations (i.e., topjt) to incorporate additional information on vehicle weight. As frontal

crash rating tests simulate a two-car collision of equal sized vehicles, the marginal effect of

weight on the ratings is explicitly zero by design. Therefore, to recalibrate the ratings, we

must leverage empirical data on traffic accidents.

We begin with a simple linear probability model depicting fatality risk. The model is esti-

mated on the subset of two-car collisions, where vehicle weights are included in a manner

similar to Anderson and Auffhammer (2014).

deathijt = δtopjt + γ(weightijt − weightoppit ) + εijt (2)

where the outcome indicates a death taking place in the collision. δ describe the mechanical

relationship between the safety rating and fatality risk when drivers and cars are randomly

assigned to accidents and γ is the marginal effect of relative weight, where weightijt describes

driver i’s vehicle weight and weightoppit is the opposing vehicle weight. For simplicity, j is

collapsed to an index describing make, model, and year of the vehicle, while t is redefined as

the year of the accident.
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When δ is identified as the reduced fatality risk of a top pick, we can directly recalibrate

the safety pick designations accounting for the role of vehicle weight. The procedure simply

re-scales fatality risk to match top pick probability, implicitly assuming a linear mapping

between the two metrics. The counterfactual safety ratings are then calculated as the fol-

lowing.

top∗j =topj +
∂top

∂w
(wj − w̄) = topj +

γ

δ
(wj − w̄) (3)

where w̄ defines a baseline vehicle weight and wjt is the vehicle’s weight. When wjt = w̄

— as is imposed by design in the controlled frontal crash tests — the counterfactual rating

equals the true rating. Equation 3 illustrates how a feedback loop might occur when relative

weight is incorporated into safety ratings, where average weights, w̄, might be updated by

the rating agency on a periodic basis.

Given that drivers and vehicles are not randomly assigned to accidents, the mechanical

relationship describing the empirical safety of a top pick is not identified through direct

estimation of Equation 2. In addition to the mechanical effect, there is likely a behavioral

component captured; for example, if drivers of top safety picks drive more recklessly (e.g.,

Peltzman, 1975). Thus, the goal is to separate this behavioral response from the mechanical

relationship.

To explain the intuition behind our strategy, let the following equation illustrate a linear

projection of the top safety pick rating on the individual crash test dummies.

topj = RjΓ̃ + uj (4)

uj contains valuable information on the relevance of each element of Rj in the top pick des-

ignation, a classification which is modified by IIHS periodically. Thus, while the outcome

of each individual crash test (i.e., Rj) may not be salient to the consumer, the top pick is,

resulting in potential selection into fatal accidents based on uj. Controlling for u separately

in Equation 2 resembles a control function approach, explicitly accounting for the behavioral

response, further isolating the mechanical effect of safety ratings. This is the intuition behind
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our strategy and, as the control function approach is equivalent to two-stage least squares, we

implement an instrumental variables design, leveraging the individual crash test outcomes to

pin down the mechanical relationship between IIHS safety ratings and empirical fatality risk.

Finally, given the potential for consumers to additionally select into fatal car crashes based

on their vehicle size, we will only interpret our estimate of relative weight, γ, based on inde-

pendent variation in opposing vehicle weights. As vehicles in two-car collisions are presumed

to be matched together in a plausibly exogenous manner, this approach should credibly pin

down the causal role of vehicle size in fatality risk. We additionally include varying sets of

geographic and vehicle-specific controls and fixed effects to further isolate this variation.

3.3 Effect of Weight-Incorporated Safety Ratings

The primary estimate of interest in this paper is the effect of a counterfactual, weight-

incorporated safety rating on vehicle demand. To calculate this, we substitute the recali-

brated top pick rating in Equation 3 into the demand model from Equation 1. Deriving the

treatment effect on demand, which compares the counterfactual rating to the current regime,

gives the following.

%∆q(w)

∆regime
= α

γ

δ
(w − w̄) (5)

Thus, the combined parameter αγ/δ is the key estimate of interest in this paper and illus-

trates the additional demand for relative vehicle weight exogenously produced by a ratings

design which incorporates objective information on vehicle size into published safety evalu-

ations.

4 Results

In this section, we present the main parameter estimates from both our demand and fatality

risk models. Finally, the estimates of interest combine the two models and explores various

counterfactual estimates of a new ratings regime.

4.1 Demand Estimates

The main estimates from our demand model are presented in Table 2. The coefficient of

interest is that on the top safety pick indicator, α in Equation 1. Column 1 reports a stan-
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dard fixed effects estimator, which controls for make-model and city-by-year effects. This

specification does not control for other potential confounders related to the safety award.

Column 2 introduces granular controls for the 8 individual safety test outcomes. Column 3

includes additional vehicle characteristics as controls and Column 4-5 control for MSRP.

Columns 2 and 3 report results from our primary specification which directly controls for

the vehicles’ performance in each of the crash test outcomes. These estimates suggest top

pick awards generate 5 percent higher demand relative to non-top safety picks. A causal

interpretation requires that all other confounders are absorbed into the crash test dummies,

while exploiting the residual, plausibly exogenous variation in the criteria change for top

pick classification. Under this conditional independence identification assumption, Columns

2 and 3 identify the reduced form effect of top pick designation on vehicle demand. This

captures a direct response to the rating, but also a potential indirect response through vehi-

cle prices. Without a comprehensive, general equilibrium analysis, this net effect is the one

of interest.

To explore potential supply-side effects and isolate the direct effects of safety ratings, we

control for vehicle prices directly. Column 4 includes MSRP in the regression, ignoring po-

tential price endogeneities. Our primary estimate does not change significantly, which we

can either attribute to a low correlation between prices and the top pick classification (e.g.,

no supply-side response to ratings) or to inelastic consumer demand (e.g., prices are not rel-

evant in the demand equation). To correct for the likely upward biased estimates on MSRP

arising from unobserved product characteristics, we estimate the equation by two-stage least

squares, leveraging standard price instruments proposed by Berry, Levinsohn, and Pakes

(1995). Specifically, these include the average level of each of the included characteristics

across all other models in the choice set. Unsurprisingly, after instrumenting for price, elas-

ticities increase and the estimate on top pick designation doubles in magnitude. Given the

validity of these instruments, we interpret this finding as a possible supply-side response by

the vehicle manufacturer, who sets higher prices following the top pick award, partially —

but not completely — offsetting the demand response.

14



4.2 Fatality Risk Mapping

Table 3 reports the main estimates from the vehicle accidents model in Equation 2. Column

1 presents a naive specification which aims to directly measure the empirical safety of an

IIHS top pick. While the negative sign indicating a drop in fatality risk is as expected, we

also expect an upward biased estimate when top safety pick drivers are more likely to select

into high risk accidents. Columns 2-6 aim to mitigate this bias by instrumenting for the

safety ratings using the 8 individual crash test outcomes, assumed to be less salient to the

driver. Column 2 presents the two-stage least squares results with no additional controls,

while Column 3 includes the curb weights of both the driver’s vehicle and the opposing

vehicle. As in Anderson and Auffhammer (2014), we will only interpret the estimates of

the opposing vehicle weight as causal given the potential endogeneity of one’s own-vehicle

weight. These estimates illustrate a relative increasing in fatality risk .01 percentage points

per 1,000 pounds.

The results in Table 3 produce a mapping between safety ratings and fatality risk, which we

next exploit in order to incorporate weight into a counterfactual safety rating. Of interest

is the ratio of the weight coefficient to the top safety pick coefficient, or γ/δ in Equation

3. The counterfactual ratings are calculated for each vehicle in our data set, given the

weight of that vehicle, evaluated relative to the overall mean weight for that model year.

The use of model year-specific mean weights is performed strictly for illustrative purposes.

An alternative regime might be one that uses mean fleet weight — the weight of a repre-

sentative vehicle involved in an accident — or even one which varies over geographic location.

When the safety picks are reevaluated, we have a new rating system which accounts for the

objective role that weight plays in vehicle accidents. For a heavy car, this may partially off-

set factors that otherwise weaken a vehicle’s safety performance. To illustrate the degree to

which the safety ratings might flip, in Table 4, we present the vehicle models with the largest

relative change in rating after accounting for weight. Here, we define the relative change in

rating of a vehicle j as: ∆j = topj · (1 − top∗j) + (1 − topj) · top∗j . Note that counterfactual

ratings are not bounded between one and zero, given the linear mapping imposed in the

derivation.
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The distribution of the rating changes across all models in our data set is presented in Figure

1. By construction these changes are centered on zero, where no change is added when a

vehicle’s weight equals the average weight. Thirteen percent of observations are outside of

the (-0.5,0.5) interval, indicating the vehicles with a probable switch in top pick status under

the new methodology.

4.3 Combined Model

In a standard model of a vehicle arms race, consumers receive utility from weight for both the

value placed on added capacity or cargo space and from the safety it provides (White, 2004;

Li, 2012; Anderson and Auffhammer, 2014; Scott, 2022). However, these two mechanisms

are difficult to disentangle from observational data on vehicle purchases. In this paper, we

form a thought experiment, whereby publicly available information on safety of a vehicle is

adapted to account for vehicle weight, suggesting an additional lens in which preferences for

weight as a safety attribute may be isolated from other factors.

Under the new ratings regime, following similar notation from Equations 1 and 3, we might

write demand for vehicles as a function of vehicle weight and safety ratings as follows.

log(qjt) =αtop∗jt + βwwjt + εjt

=αtopjt + α
γ

δ
(wjt − w̄) + βwwjt + εjt

(6)

This provides a framework for evaluating the extent to which preferences may exogenously

be affected by an alternative ratings regime. Of interest is the additional demand for weight

arising from the new methodology or, the combined parameter αγ/δ. Assuming constant

demand for weight due to other factors, βw, we can compare these two weight parameters

in order to measure the extent to which the size of vehicles might grow due to this change

in ratings methodology.

Estimates for the combined weight parameter are presented in Table 5. Columns 1-3 present

estimates combining specification 2 of Table 2 (i.e., demand model D2) with Columns 3-5 of

Table 3 (i.e., crash model C3-C5). Columns 4-6 combine Column 3 of Table 2 with Columns

3-5 of Table 3. Standard errors are derived using the delta method and the corresponding
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covariance matrices from these two models. The model suggests that the new ratings regime

would increase the marginal demand of a 1,000 pound increase in weight by about 3 percent.

When comparing this estimate to the weight parameters in Table 2, our estimates suggest

that such a policy change would increase preferences for weight by about 10 to 13 percent.

Figure 2 plots the treatment effect of the methodology change from Equation 5 across the ob-

servable range of vehicle weights. A bar plot depicts the average effect for vehicles classified

as a “Car”, “SUV”, or a “Truck”. The width of each bar represents the interquartile range

of relative weight for each vehicle type and weights are evaluated against the sales-weighted,

average curb weight in our data set; approximately 3,800 pounds.

These estimates suggest that under this revised ratings system, cars are 1 percent less likely

to be purchased, while SUVs and Trucks are 2 and 6 percent more likely to be bought,

respectively. Jointly, SUVs and Trucks are 2.6 percent more likely to be purchased when

vehicle size is accounted for in safety ratings.

5 Conclusion

A vehicle arms race occurs when consumers rationally internalize vehicle size as a safety

attribute, thus, purchasing heavier and heavier vehicles to mitigate their risks against other

large cars on the road. Estimating this best response mechanism is difficult given the inher-

ent feedback loops defining an arms race, though prior studies have provided evidence that

such preferences likely exist in practice (e.g., Li, 2012, Scott, 2022). The social costs asso-

ciated with this behavior has also been clearly documented in the literature (Crandall and

Graham, 1989; Evans, 2001; Van Auken and Zellner, 2005; Anderson, 2008; Jacobsen, 2013;

Anderson and Auffhammer, 2014), as heavier vehicles generally produce both environmental

externalities and additional safety risks to other drivers.

When concerned about safety, a consumer may look to multiple sources of information to

make a suitable vehicle choice. While they might directly internalize weight as a safety at-

tribute, consumers looking to purchase a safe vehicle may also gather reputable information

from published safety ratings. When these ratings contain objective information about the

role of weight in vehicle accidents, the hypothesized vehicle arms race can be exacerbated.
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Thus, a socially efficient testing approach may be one that excludes these effects.

This paper explores the efficiency improvements of the current safety ratings methodology

which holds constant the role of weight in crash tests. We compare demand for vehicles

under the current ratings system to a counterfactual rating which incorporates the marginal

effects of weight on fatality risk. While the underlying function describing a safety rat-

ing may not be directly observed by the consumer, such a ratings system would create an

increased, implied preference for weight by ranking heavier vehicles higher, holding other

factors constant. Our estimates show that implied preferences for weight would increase by

10-13 percent following the change in methodology, increasing the demand for Trucks and

SUVs by 2 and 6 percent, respectively.

The findings in this paper illustrate the manner in which demand for weight may be exoge-

noulsy influenced by the ratings agency. Although manipulation of preferences is not likely

an objective, the controlled setting of the crash tests provide clear benefits by explicitly

holding vehicle size constant. While standard wall tests only simulate collisions between

equal sized vehicles, they are far less costly than an alternative which, for example, crashes

vehicles of different sizes together. An important consideration is whether ratings agencies

would have an incentive to adopt weight-incorporated ratings should testing become more

affordable. High demand by consumers and insurance companies for an accurate depiction

of risk could easily drive testing methodology in that direction; a practice, that this paper

illustrates, could produce costly outcomes, potentially exacerbating the effect of a vehicle

arms race.
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Figures

Figure 1: Relative Change in Safety Ratings

Note: The figure shows the distribution of rating changes across all models. We define the relative change in
rating of a vehicle j as ∆j = topj · (1− top∗j ) + (1− topj) · top∗j
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Figure 2: Additional Effect of Weight on Demand Through Ratings Change

Note: This figure shows the treatment effect of the weight-incorporated safety ratings across vehicle weights. A
bar plot depicts the average effect for vehicles classified as a “Car,” “SUV,” or a “Truck.” The width of each
bar represents the interquartile range of relative weight for each vehicle type, and weights are evaluated against
the average (sales-weighted) curb weight in our data set
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Tables

Table 1: IIHS Top Pick Criteria

Model Year: 2015 2016 2017 2018 2019

Test 1: Driver Side Small Overlap Front Acceptable Good Good Good Good
Test 2: Passenger Side Small Overlap Front N/A N/A N/A N/A Acceptable
Test 3: Moderate Overlap Front Good Good Good Good Good
Test 4: Original Side Good Good Good Good Good
Test 5: Roof Strength Good Good Good Good Good
Test 6: Head and Seat Restraint Test Good Good Good Good Good
Test 7: Headlight Rating N/A N/A N/A Acceptable Acceptable
Test 8: Front Crash Prevention Technology N/A Basic Advanced Advanced Advanced

Note: Above is the minimum rating requirement in each model year for the 8 primary crash tests to achieve IIHS
top pick status. Tests 1-7 are evaluated on a scale: Poor, Marginal, Acceptable, Good. Column 8 is evaluated on
a scale: Not Equipped, Basic, Advanced, Superior. “N/A” indicates that there is no minimum requirement for the
test.

Table 2: Logit Model of Vehicle Choice

(1) (2) (3) (4) (5)
Top Pick 0.0977∗∗∗ 0.0497∗∗∗ 0.0504∗∗∗ 0.0514∗∗∗ 0.0953∗∗∗

(0.0150) (0.0136) (0.0141) (0.0139) (0.0251)

Curb Weight 0.232∗∗∗ 0.245∗∗∗ 0.851∗∗

(1,000 lbs) (0.0779) (0.0845) (0.397)

MPG 0.0250∗∗∗ 0.0252∗∗∗ 0.0371∗∗∗

(0.00348) (0.00351) (0.00783)

Horsepower 0.00949 0.0243 0.700∗

(100s) (0.0380) (0.0416) (0.407)

MSRP -0.0214 -1.003∗

($10,000s) (0.0273) (0.591)
Crash Test Dummies - Yes Yes Yes Yes
Make × Model FE Yes Yes Yes Yes Yes
City × Year FE Yes Yes Yes Yes Yes
Prices - - - OLS 2SLS
Observations 36,466 36,466 36,466 36,466 36,466

Note: ∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01. Standard errors clustered by city to account
for correlation in unobserved preferences within geographic boundaries. The outcome
is log purchases of a vehicle model in a given city. This table shows the marginal effect
of top safety picks on city-level vehicle demand across different model specifications.
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Table 3: Effect of Top Pick on Fatality Risk

(1) (2) (3) (4) (5) (6)
Top Pick -0.00008 -0.00013∗ -0.00017∗∗ -0.00017∗∗ -0.00017∗∗ -0.00016

(0.00006) (0.00008) (0.00007) (0.00007) (0.00008) (0.00012)

Opposing Vehicle Weight 0.00011∗∗∗ 0.00008∗∗∗ 0.00008∗∗∗ 0.00008∗∗∗

(1,000 lbs) (0.00002) (0.00002) (0.00002) (0.00002)

Curb Weight -0.00027∗∗∗ -0.00025∗∗∗ -0.00026∗∗ -0.00025
(1,000 lbs) (0.00006) (0.00009) (0.00012) (0.00034)

MSRP -0.00001 0.00002 0.00002
($10,000s) (0.00005) (0.00007) (0.00011)

Speed Limit 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗

(0.00000) (0.00000) (0.00000)
Vehicle-type × Model-year FE Yes Yes Yes Yes Yes Yes
Vehicle-type × Make FE - - - - Yes -
Make-model FE - - - - - Yes
Year × County FE Yes Yes Yes Yes Yes Yes
Top Pick OLS 2SLS 2SLS 2SLS 2SLS 2SLS
Observations 640,820 640,820 640,820 640,820 640,820 640,816

Note: ∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01. Standard errors clustered at the make-model level. The outcome variable,
Fatality, is a binary variable that equals 0 for no death count and 1 for a positive number of death counts. This
table shows a mapping between safety ratings and fatality risk across different model specifications. We exploit
the estimated ratio of the weight coefficient to the top safety pick coefficient (γδ ) to construct counterfactual safety
ratings following Equation 3.
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Table 4: Vehicles with Largest Rating Change

Make-Model Curb Weight (lbs) Top Pick Counterfactual safety rating
Model Year: 2015 (mean weight = 3,626)

kia soul 2,800 1 .634
subaru brz 2,800 1 .627
honda fit 2,600 1 .546
chevrolet spark 2,400 1 .438
ford expedition el 5,900 0 1.032
gmc yukon xl 5,700 0 .925
ford expedition 5,600 0 .891
gmc yukon 5,500 0 .817
chevrolet tahoe 5,300 0 .756

Model Year: 2016 (mean weight = 3,655)
honda civic 2,800 1 .623
kia soul 2,800 1 .605
chevrolet sonic 2,800 1 .603
scion ia 2,400 1 .436
lincoln navigator l 6,100 0 1.095
cadillac escalade esv 5,900 0 1.005
ford expedition el 5,900 0 .998
lincoln navigator 5,900 0 .983
gmc yukon xl 5,700 0 .92
cadillac escalade 5,700 0 .905

Model Year: 2017 (mean weight = 3,678)
hyundai elantra gt 2,900 1 .634
honda civic 2,800 1 .626
mazda cx3 2,800 1 .623
hyundai elantra 2,800 1 .61
toyota yaris ia 2,400 1 .426
nissan titan xd 6,300 0 1.149
lincoln navigator l 6,200 0 1.099
ford expedition el 5,900 0 .986
lincoln navigator 5,900 0 .976
cadillac escalade esv 5,900 0 .970
gmc yukon xl 5,800 0 .927

Model Year: 2018 (mean weight = 3,715)
kia forte 2,800 1 .608
hyundai elantra 2,800 1 .599
nissan kicks 2,700 1 .529
kia rio 2,700 1 .527
cadillac escalade esv 6,000 0 .995
gmc yukon xl 5,700 0 .903
cadillac escalade 5,700 0 .880
chevrolet suburban 5,700 0 .860
nissan titan 5,600 0 .834
gmc yukon 5,500 0 .800

Model Year: 2019 (mean weight = 3,764)
hyundai veloster 2,800 1 .582
kia rio 2,700 1 .534
hyundai accent 2,700 1 .518
nissan kicks 2,700 1 .507
gmc yukon xl 5,800 0 .888
cadillac escalade 5,700 0 .849
chevrolet suburban 5,700 0 .843
nissan titan 5,600 0 .829
gmc yukon 5,500 0 .790
toyota tundra 5,400 0 .743

Note: This table presents vehicle models with the largest relative change in ratings after accounting for weight. We define the
relative change in ratings of a vehicle model as: ∆j = topj · (1− top∗j ) + (1− topj) · top∗j .

24



Table 5: Effect of Weight-Incorporated Safety Ratings

(1) (2) (3) (4) (5) (6)
Combined parameter 0.03149∗ 0.02166 0.02209 0.03191∗ 0.02195 0.02239

(0.01818) (0.01473) (0.01680) (0.01741) (0.01371) (0.01591)
Demand Model:
Crash Test Dummies Yes Yes Yes Yes Yes Yes
Make × Model FE Yes Yes Yes Yes Yes Yes
City × Year FE Yes Yes Yes Yes Yes Yes
Controls - - - Yes Yes Yes

Crash Model:
Vehicle-type*Model-year FE Yes Yes Yes Yes Yes Yes
Vehicle-type*Make FE - - Yes - Yes
Year*County FE Yes Yes Yes Yes Yes Yes
Controls - Yes Yes - Yes Yes

Note: ∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01. Standard errors in parenthesis were derived using the delta method
and covariance matrices from the demand and crash models. This table reports the primary parameter of
interest, αγ

δ , which is the additional demand for weight arising from the new safety rating methodology.
α is the marginal effect of top safety pick on vehicle demand obtained from Equation 1. γ

δ is the ratio of
the weight coefficient to the top safety pick coefficient following Equation 3. Columns 1-3 present estimates
combining specification 2 of Table 2 with Columns 3-5 of Table 3. Columns 4-6 combine Column 3 of Table
2 with Columns 3-5 of Table 3
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