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Abstract

National, state, and local governments have implemented various subsidy programs to pro-
mote electric vehicle (EV) adoption by reducing upfront costs for consumers. Standard economic
theory suggests that the effectiveness of such subsidies should not depend on whether they tar-
get consumers or dealers. Since dealers are an important intermediary in most vehicle purchase
decisions, with the capacity to nudge consumers towards EVs, subsidies targeting dealers could
accelerate adoption. This paper tests that assumption using a unique EV rebate program in
Connecticut (CHEAPR), which provides both consumer and dealer rebates. We exploit cross-
sectional and temporal variation in rebate levels to estimate the effects of consumer and dealer
subsidies on EV prices and adoption. Our results show that while 73% of consumer subsidies
are passed through to buyers, dealer subsidies have no statistically significant effect on prices or
adoption. Using a structural model of automobile demand and supply, we further analyze the
optimal allocation of subsidies to maximize EV adoption under a fixed budget. Policy coun-
terfactuals reveal that reallocating subsidies to the consumer side can increase adoption, and
in particular, focusing on battery electric vehicles (BEVs) and price-sensitive models signifi-
cantly boosts adoption and environmental benefits. Additionally, targeting consumer subsidies
to low-income buyers or vehicles with high North American value-added can enhance equity or
domestic growth while increasing EV adoption and environmental benefits.
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1 Introduction

The pass-through of a subsidy or tax matters for understanding the distributional implications of

that policy. Standard economic theory suggests that economic incidence (i.e., who benefits from

the subsidy) is independent of statutory incidence (i.e., who receives the subsidy). That is, the

equilibrium outcome is independent of who nominally pays the tax or receives the subsidy (Jenkin

(1872)).

Contrary to the prediction of standard economic theory, some research shows that statutory

incidence matters. For example, Chetty et al. (2009) suggest that the economic incidence of a tax

depends on who pays the tax in the case of the alcohol market. An increase in excise tax (included in

the posted price) reduces beer consumption more than a similar increase in sales tax (added at the

register). In addition, Jiménez et al. (2020) show that statutory incidence matters in the mortgage

market. Specifically, they find a reduction in pass-through rates due to a shift in mortgage tax from

borrowers to lenders.

Subsidies and tax credits are widely used to incentivize the purchase of green products such

as solar panels or alternative fuel vehicles. In the U.S., these subsidies are available from both

the federal government and from a number of states that want to increase the take-up of these

technologies. National and state governments in the U.S. spent nearly 22 billion dollars on electric

vehicle (EV) subsidies in 2021 (Bennett and Isaac (2023)), and understanding who benefits from

these policies and how effective they are at inducing purchases is a key part of assessing these

policies. If economic incidence is independent of statutory incidence, no matter how policymakers

distribute the subsidy between buyer and seller, the effects on equilibrium outcomes should be the

same. However, if statutory incidence matters in the EV market, subsidizing one agent - buyer or

seller – would lead to higher pass-through and, potentially, differential vehicle adoption rates.

This paper examines the incidence of electric vehicle subsidies and asks two questions: first,

does the statutory incidence of subsidies affect the economic incidence, and if so, who benefits from

the subsidies for electric vehicles? Second, we ask whether alternative subsidy design could change

electric vehicle purchase patterns to achieve particular policy goals. To answer these questions, we

study a unique EV rebate program in Connecticut (CHEAPR) that provides both consumer (up to

$3,000) and dealer (up to $300) subsidies for each EV purchase. This unique program provides a

novel quasi-experiment with temporal and cross-sectional variation to examine whether consumer

and dealer incentives impact EV prices and adoption equally.

To test whether economic incidence is independent of statutory incidence and learn about pass-

through rates, this paper employs a reduced-form model specification to evaluate the effects of

consumer and dealer subsidies on equilibrium outcomes. Taking advantage of the cross-sectional

and temporal variation, we examine the effects of these two subsidies on EV prices and adoption

using a rich dataset of new vehicle registration data in Connecticut and nine other control states

from 2018 to 2022. In addition, to further separate the effects of consumer and dealer subsidies, we

employ an event-study approach to analyze only EV purchases that took place nine months before

and after a reduction in either consumer or dealer subsidy.

The findings from the reduced-form model indicate that consumer and dealer subsidies influence

electric vehicle prices and adoption in distinct ways. A substantial portion of consumer subsidies,

approximately 73%, is passed through to consumers. In contrast, dealer subsidies do not significantly

impact EV prices statistically. Utilizing an event-study approach, which focuses on EVs that expe-
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rienced reductions in either consumer or dealer subsidies alone, we further validate that consumers

benefit predominantly from consumer subsidies. At the same time, they receive no benefits from

dealer subsidies.

Additionally, the reduced-form model estimates that for every $1,000 increase in consumer sub-

sidies, per capita EV sales rise by about 4.5%. In contrast, dealer subsidies show no statistically

significant effect on EV sales. Our event-study analysis reinforces this conclusion, demonstrating

that a decrease in consumer subsidies leads to a decline in EV adoption. In contrast, reducing dealer

subsidies has no noticeable impact on EV sales. These findings highlight the importance of exploring

targeted subsidy design to maximize EV adoption and environmental benefits.

To fully understand how subsidy design affects outcomes, this paper estimates a model of demand

and supply for new cars, in which heterogeneous consumers choose vehicles to maximize utility and

dealers simultaneously choose vehicle prices to maximize profits, given a set of subsidies. While the

reduced-form results highlight the effectiveness of the consumer subsidy in decreasing the upfront

purchasing cost and increasing EV sales, the estimated demand and supply model allows us to ex-

amine how policymakers can reallocate EV subsidies to achieve particular goals, such as maximizing

EV adoption and environmental benefits, keeping the level of state government spending fixed. The

structural model allows for more realistic substitution patterns and accounts for the equilibrium

effect on the supply side that a linear reduced-form model cannot fully explain.

The structural model results are consistent with the reduced form findings, showing that deal-

ers respond much more strongly to consumer incentives than to incentives that go directly to the

dealer. For every $1,000 increase in consumer incentives, dealer reactions are equivalent to a 3%

marginal cost reduction for a cost pass-through rate of 100%. However, dealer incentives do not

significantly influence dealer behavior, suggesting that their magnitude (or salience to consumers)

may be insufficient to prompt dealerships to alter pricing strategies or nudge them towards selling

EVs instead of traditional internal combustion engine vehicles. Overall, these results suggest that

targeted consumer subsidies are more effective in enhancing EV adoption than dealer incentives,

highlighting the need for policymakers to optimize subsidy designs for maximum impact.

We utilize estimated demand and supply models to explore various policy counterfactuals aimed

at optimizing the allocation of subsidies for EVs under the CHEAPR program. The analysis indicates

that consumer incentives are critical in boosting EV adoption and mitigating environmental impacts.

Specifically, removing consumer subsidies results in a 7.11% decline in EV sales due to a price increase

of $394, highlighting the high price sensitivity of the EV market. Removing the incentives also leads

to increased CO2 damages, underscoring the importance of subsidies in promoting cleaner vehicle

choices.

Moreover, we evaluate different distributions of consumer incentives and their impact on mar-

ket outcomes, identifying the most cost-effective subsidy designs that promote higher EV adoption

and environmental sustainability. We can achieve significantly greater environmental benefits and

adoption by reallocating subsidies to focus exclusively on BEVs. Specifically, targeting subsidies to

BEVs rather than PHEVs leads to more substantial reductions in emissions and damages. Further-

more, reallocating incentives to price-sensitive EV models generates even greater improvements in

EV adoption and environmental outcomes. Beyond adoption and environmental benefits, targeting

those with high North American value-added1 can support domestic manufacturing. Finally, target-

1the percentage of U.S./Canadian equipment (parts) content. Data from the National Highway Traffic Safety
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ing low-income households proves to be an effective strategy for enhancing equity in EV adoption

while simultaneously delivering substantial environmental benefits. Overall, our analysis under-

scores the potential for refining EV consumer subsidy designs to achieve a more sustainable and

efficient market, offering crucial insights for policymakers aiming to balance economic growth with

environmental objectives.

This paper contributes to several strands of the literature. First, our paper contributes to

the literature on the incidence of durable goods incentives, which has been particularly focused

on incentives for efficient vehicles. Several studies have documented high pass-through rates for

consumer incentives. In vehicle buyback settings, Kaul et al. (2016) report a pass-through rate

above 100% for the high-end car segment, and Busse et al. (2012) also find that dealers pass 100% of

the Cash for Clunkers rebate to consumers. Similarly, Sallee (2011) finds that consumers captured

virtually all of the state and federal hybrid vehicle incentives, while Muehlegger and Rapson (2022)

report that the pass-through rate of EV subsidies in California is indistinguishable from 100 percent.

More recently, Barwick et al. (2023) found high pass-through of electric vehicle incentives on a global

scale, and Allcott et al. (2024) also find that this holds for the incentives in the Inflation Reduction

Act. For a related technology, solar panels, Pless and van Benthem (2019) find high pass-through

rates for both owned and leased solar installations, despite differences in whether the household or

solar company receives the subsidy. This paper adds further support for the pattern of high pass

through of incentives for efficient durable goods, while also providing the first evidence that this

outcome depends on statutory incidence in the vehicles context.

Second, this paper contributes to a growing body of research on the effect of subsidies and tax

incentives on energy-efficient vehicle adoption. Beresteanu and Li (2011), Chandra et al. (2010),

and Gallagher and Muehlegger (2011) found that federal and provincial incentives were influential

in increasing hybrid vehicle uptake. Clinton and Steinberg (2019) showed that in the early years of

the electric vehicle market, incentives increased adoption, albeit without improving overall welfare.

Jacqz and Johnston (2024), Linn (2022), Xing et al. (2021), Liu (2022), and Allcott et al. (2024)

have examined tradeoffs in subsidy targeting. Lohawala (2023) found that one feature of federal

subsidies – the dynamic phaseouts – can have major implications for total EV sales. Separately,

Wang and Xing (2023), Barwick et al. (2024), Remmy (2023), and Sinyashin (2021) have documented

how subsidy design can affect the attributes of product offerings, while Springel (2021) and Li et al.

(2017) compare the effects of vehicle subsidies to charging station subsidies and Armitage and Pinter

(2022) compare subsidies on the consumer side to supply-side policies. We add evidence about the

benefits of redesigning subsidies to target particular environmental or distributional objectives, and

unlike prior papers, we also document how the subsidy’s statutory incidence can affect overall sales.

Unlike the papers that consider supply-side policies that target manufacturer choices, we focus on

policies that affect dealer behavior rather than manufacturer behavior.

Our paper’s findings have important policy implications. EV incentive programs of various

types are increasingly implemented in the U.S. and other countries. In addition, the lessons about

targeting have broader policy implications for other green technology incentive programs nationally

and internationally.

The rest of the paper is organized as follows. Section 2 describes the institutional background

of the U.S. EV market and, specifically, the CHEAPR program. Section 3 presents the data used

Administration’s Part 583 American Automobile Labeling Act Reports.
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for reduced form and structural model analyses. Section 4 investigates whether statutory incidence

matters by estimating the effect of consumer and dealer subsidies on EV prices and adoption.

Sections 5, 6, and 7 introduce a demand and supply model for new cars and examine the effect of two

subsidies on dealer behavior. Section 8 determines the most cost-effective way for policymakers to

maximize EV adoption and achieve environmental goals under the current level of state government

spending using structural model estimates and counterfactual analyses. Section 9 concludes.

2 Institutional Background

Since national and state governments widely use subsidies to promote electric vehicle adoption, the

answer to whether subsidies should go to buyers or sellers has important implications for optimal

tax dollar use in the U.S. electric vehicle market. Specifically, we study a unique rebate program in

Connecticut (CHEAPR) that provides both consumer and dealer subsidies for each EV purchase.

This program allows us to answer whether giving the same dollar to consumers or dealers leads to

higher EV take-up.

2.1 U.S. Electric Vehicle Market

Electrification of transportation is widely seen as a crucial part of the solution to climate change

and energy security. As a result, countries worldwide have set ambitious goals to promote electric

vehicles and phase out gas-fueled cars entirely. For example, the U.S. government plans to have

half of all new vehicles electric in 2030 (The White House (2021)). The European Union also aims

to have at least 30 million zero-emission vehicles by 2030 and effectively ban new non-electric cars

starting from 2035 (European Commission (2022)).

Since the high upfront cost remains one of the main barriers to EV adoption for consumers,

national and state governments have employed a range of generous financial incentives to spur

adoption. According to Kelley Blue Book (2021), the average transaction price for an electric

vehicle is $57,346. This is roughly $17,000 higher than the average price of $39,571 for all cars in the

industry. To alleviate this high purchasing price, the U.S. government has spent billions of dollars

on federal tax credits for EVs targeted explicitly toward consumers. State governments have also

spent millions on various EV financial incentive programs. For example, according to Muehlegger

and Rapson (2022), by 2020, California has spent roughly $900 million on EV subsidies.

Thanks to these financial incentives, the EV market has grown exponentially and is expected

to expand in the next decade. The number of EVs on the road jumped from about 22,000 to

a little over 2 million over the 2011–2021 decade (BLS (2023)). EV market share has expanded

from 0.17% in 2011 to 4.6% in 2021 (BLS (2023)). Furthermore, with increased consumer interest,

battery technology advancement, and automakers’ commitments to EVs, many forecasts expect a

strong acceleration in the years to come. For example, S&P Global Mobility forecasts that EVs can

account for 40 percent of total car sales by 2030 (BLS (2023)).

Despite the rapid growth in the last decade, the EV market has not reached maturity, and

thus, subsidies have a key role in accelerating EV adoption. As battery technology improves and

production costs become cheaper, the gap between EVs and gas-fueled cars is expected to shrink.

For example, Bloomberg NEF (2021) optimistically forecasts that EVs will be cheaper to purchase,

on average, within the next six years than conventional cars. However, until the market becomes
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more mature, it is essential that consumers can offset this price gap between EVs and conventional

gas-fueled cars through financial incentives such as subsidies. Therefore, the answer to which side

of the market (and how much) to subsidize can inform policymakers of a more effective way to

maximize adoption under a budget constraint.

2.2 CHEAPR Program

The Connecticut Hydrogen and Electric Automobile Purchase Rebate (CHEAPR)2 is the only EV

incentive program in the U.S. that targets both buyers and sellers to accelerate adoption. In 2015, the

Connecticut Department of Energy and Environmental Protection (DEEP) launched the CHEAPR

pilot program to close the upfront price gap between EVs and conventional cars. Along with federal

tax incentives, CHEAPR subsidies can reduce the cost of an EV by up to $9,000 (CHEAPR (2023)).

After the launch of CHEAPR, annual sales of light-duty EVs in Connecticut increased from 616

units in 2012 to 2,304 units in 2017. The market share of EVs in Connecticut went from 0.69%

in 2013 to 2.02% in 2018, in part with the help of CHEAPR (Alliance for Automotive Innovation

(2021)).

Starting from May 19, 2015, consumers and dealers receive CHEAPR rebates for every purchase

or lease of a new EV. Individual applicants are qualified to receive only one CHEAPR rebate (up to

$3,000). The consumer can either choose to have the rebate applied to reduce the cost of the vehicle,

or they may opt to retain the rebate, for example, to offset the cost of installing at-home charging

equipment3. Dealerships receive up to $300 for each eligible vehicle sold or leased that received

a CHEAPR incentive. Dealerships or manufacturer-owned or operated distribution locations that

only sell BEVs (e.g., Tesla) do not qualify for a dealer incentive (CHEAPR (2023)).

To successfully reserve the funds for consumer and dealer subsidies, dealers must meet two

deadlines. First, dealers are responsible for submitting CHEAPR applications on behalf of consumers

no later than ten calendar days after the date of purchase or lease. Additionally, dealers must upload

all supporting documents no later than 45 calendar days after the date of purchase or lease. If these

deadlines are not met, the application will be canceled, and the rebate amount will be returned to

the available program funds. Within ten calendar days from application approval, rebates will be

issued to the dealership, leaser, or purchaser on a first-come, first-served basis based on receipt of

complete applications (CHEAPR (2024)).

This unique program provides a novel quasi-experiment with temporal and cross-sectional varia-

tion to test if statutory incidence implies economic incidence. Since 2015, the program has undergone

five reductions to consumer subsidies and three reductions to dealer subsidies. In addition, consumer

subsidies vary across EV type and battery capacity: a car in the same EV type with higher bat-

tery capacity receives higher consumer subsidies. Dealer subsidies vary across brand groups ($0
for Tesla and positive for non-Tesla), EV type, and battery capacity (for parts of the program).

Figure 3 illustrates the cross-sectional and temporal variation in consumer subsidies using examples

of representative models. Figure 4 illustrates the cross-sectional and temporal variation in dealer

2portal.ct.gov/cheapr
3In the pilot program between May 2015 and May 2021, consumers are qualified to receive the rebate directly or

transfer the rebate to the dealership. The majority of consumers (81%) assigned the rebate to the dealership (Johnson
et al. (2016)). For many brands, the percentage of rebates assigned to dealerships reaches nearly 100% (Figure A3).
Starting from June 2021, consumers are only qualified to transfer the rebate to the dealership who will deduct from
the transaction price of the EV purchase.
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subsidies using examples of representative models. The program eligibility and incentive amounts

are summarized in Figure 2.

The state legislation passed in 2019 allocates $3 million annually through the end of 2025 to-

ward the CHEAPR program (Connecticut DEEP (2016)). This paper can offer CHEAPR program

guidance on which side of the market and how much to subsidize going forward to maximize EV

adoption, subject to this annual budget constraint. In addition, green-product incentive programs

of various types are increasingly implemented in the U.S. and other countries. The effectiveness of

the CHEAPR subsidy design has broader implications for optimal policy for other green products

nationally and internationally.

Figure 1: Treated and Control States in this study
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Figure 2: CHEAPR Eligibility Rule and Subsidy Amounts
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Figure 3: Consumer incentive variation over time, EV type, and battery capacity

(a) BEV

(b) PHEV

Note: The figures above plot the consumer subsidy amount for representative EV models under the CHEAPR program.

These figures illustrate the cross-sectional and temporal variation in consumer subsidies.
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Figure 4: Dealer incentive variation over time, EV type, and battery capacity

(a) BEV

(b) PHEV

Note: The figures above plot the dealer subsidy amount for representative EV models under the CHEAPR program.

These figures illustrate the cross-sectional and temporal variation in dealer subsidies.
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3 Data

We compiled a rich dataset of new car purchases in CT and nine other states (Figure 1) from 2018

to 2022 using several data sources. Our main dataset is vehicle registration data from the U.S.

car market collected by S&P Global Mobility. We supplement this dataset with data on charging

stations, fuel economy, fuel cost, state and federal incentives, and demographics.

Our vehicle registration dataset contains monthly new vehicle registrations at the state level for

every car model. Each vehicle model is defined as a make, model name, model year, fuel type,

trim, and style. Following previous literature on demand estimation for the automobile market, we

treat new registrations as sales. For each model sold in a state in a month, we observe the reported

transaction prices. To our best knowledge, these are the prices excluding any subsidies or discounts.

We obtain a wide range of car characteristics using DataOne’s VIN Decoder. These characteristics

include but are not limited to MSRP, vehicle size (length, height, width), vehicle weight (curb weight,

wheelbase), horsepower, fuel economies, and battery capacity. We obtain the publicly available

dataset listing the number of charging stations from the EIA and aggregated the number of charging

stations to the state-month level. We collect monthly fuel costs (including gas, electricity, and diesel

prices) for each state in our dataset from EIA and supplement this data with EPA data on electric

range and fuel economy. We can calculate dollar-per-miles for each model using the fuel cost and

fuel economy.

We also obtain demographics at the state level from the American Community Survey (ACS),

such as income per capita and population. We use ACS data to build income distributions at the

state-month level for the structural model. Using the household income draws from the ACS data,

we can fit the mean and variance of a log-normal distribution.

We obtain the CHEAPR program rule on consumer and dealer subsidies for EVs from the

program’s website. In addition, we gather information on other states’ consumer subsidies and

federal credits from the Alternative Fuels Data Center (AFDC). This information allows us to

assign state—and federal-level subsidy amounts for each EV model.

For the demand estimation, we aggregate the data up to the state-month-product level where a

product is defined as a make/model/model year/fuel type (e.g., 2018 Chevrolet Volt PHEV). Fuel

types include gasoline, hybrid, battery electric (BEV), plug-in hybrid (PHEV), diesel, and flex-

fuel. We use the characteristics of the most frequently sold trim for each product. We reduce the

size of the data further by leaving out cars with MSRP above $110,000 and keeping only new car

purchases. For estimation tractability, we set the potential market size equal to the total number

of cars registered in a given state each year. The final data consists of 363,100 product-month-state

product observations. Tables 1 and 2 provide detailed summary statistics.
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Table 1: Summary Statistics for CT

2018 2019 2020 2021 2022
BEV
Transaction Price 45.753 52.931 53.834 51.491 58.631
Net Price 36.678 46.418 48.595 45.883 54.133
Consumer Incentive 1.575 0.910 0.482 0.674 0.786
Dealer Incentive 0.102 0.070 0.043 0.043 0.042
Federal Credit 7.500 5.604 4.757 4.934 3.712
Sales 1368 1870 2214 4312 4742
Dollar-per-mile 0.07 0.08 0.08 0.08 0.10
Curb weight 3682 4079 4267 4296 4721
PHEV
Transaction Price 44.812 45.433 51.919 49.238 53.091
Net Price 38.958 39.606 45.883 42.982 47.413
Consumer Incentive 0.532 0.377 0.184 0.239 0.269
Dealer Incentive 0.104 0.085 0.028 0.028 0.027
Federal Credit 5.322 5.450 5.852 6.017 5.409
Sales 1481 812 741 2432 2163
Dollar-per-mile 0.13 0.14 0.15 0.17 0.20
Curb weight 4210 4172 4436 4455 4585
Non-EV
Transaction Price 36.849 38.733 40.262 42.624 45.198
Net Price 36.849 38.733 40.262 42.624 45.198
Consumer Incentive 0 0 0 0 0
Dealer Incentive 0 0 0 0 0
Federal Credit 0 0 0 0 0
Sales 160401 141843 106087 107202 76899
Dollar-per-mile 0.14 0.14 0.15 0.18 0.21
Curb weight 3993 4024 4083 4149 4180

Notes: Mean values of key characteristics for treated state
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Table 2: Summary Statistics for Other States

2018 2019 2020 2021 2022
BEV
Transaction Price 44.384 51.330 57.317 55.245 64.196
Net Price 36.884 45.670 52.867 50.488 60.498
Consumer Incentive 0 0 0 0 0
Dealer Incentive 0 0 0 0 0
Federal Credit 7.500 5.659 4.451 4.757 3.698
Sales 1573.6 1829.4 1924.7 3764 4569.5
Dollar-per-mile 0.07 0.08 0.08 0.09 0.10
Curb weight 3745 4046 4306 4323 4727
PHEV
Transaction Price 44.650 44.850 54.774 54.889 57.986
Net Price 39.319 39.426 48.861 48.771 52.567
Consumer Incentive 0 0 0 0 0
Dealer Incentive 0 0 0 0 0
Federal Credit 5.331 5.423 5.913 6.118 5.419
Sales 938.4 615.9 463.8 1707.9 1768.9
Dollar-per-mile 0.13 0.14 0.15 0.17 0.20
Curb weight 4234 4177 4460 4502 4590
Non-EV
Transaction Price 36.832 39.402 42.751 47.101 50.012
Net Price 36.832 39.402 42.751 47.101 50.012
Consumer Incentive 0 0 0 0 0
Dealer Incentive 0 0 0 0 0
Federal Credit 0 0 0 0 0
Sales 317609 285039 203273 186753 135926
Dollar-per-mile 0.14 0.14 0.15 0.19 0.21
Curb weight 4007 4031 4096 4173 4186

Notes: Mean values of key characteristics for control states that do not have
any incentive for EVs during the 2018-2022 time period
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4 Impacts of Consumer and Dealer Subsidies on EV Prices

and Sales

In this section, we estimate the effects of consumer and dealer subsidies on EV prices and sales. We

begin with the reduced-form model specification used to estimate these effects. This is followed by

an event-study approach, where we separately estimate the effect of consumer and dealer subsidies

on EV sales and prices.

4.1 EV Prices

We estimate the effect of consumer and dealer subsidies on the out-of-pocket price that customers

pay for EVs. Exploiting the cross-sectional and temporal variation in both consumer and dealer

subsidy levels, we estimate the following specification:

P c
jst = θcCustSubjst + θdDealerSubjst + β1FedCreditjt + β2Xjst + µj + µs + µJt + ϵjst (1)

Our dependent variable, denoted by P c
jst, is consumers’ out-of-pocket for vehicle j at month i in

state s. P c
jst equals the transaction price less consumer subsidies at the state level and federal credit.

A vehicle j is defined at a granular level: make - model – model year – fuel – trim level. CustSubjst

and DealerSubjst are the consumer and dealer subsidy amount available for vehicle j at month t in

state s. Since most EVs during this time are also eligible for federal credit, we include the amount

of federal credit as a control variable. Xjst is a vector of control variables, including MSRP, number

of charging stations, horsepower, curb weight, years since vehicle introduction, body type, and drive

type. µj are vehicle fixed effects where a vehicle is defined as the combination of make and model

(e.g. Chevrolet Bolt). µs are state fixed effects. µJt are month-EV type fixed effects where J is the

EV type (BEV or PHEV) containing vehicle j and t is the month vehicle j is purchased. Our data

covers 60 months and 10 states.

Our main parameters of interest are θc and θd, measuring the extent to which consumer and

dealer subsidies affect the out-of-pocket price consumers pay for EVs. These coefficients can be

interpreted as the fraction of consumer and dealer subsidies passed through to consumers. Either

θc or θd equal to 0 would imply that none of the subsidy amounts is passed through to consumers.

In this case, the dealer is the only beneficiary of the respective subsidy. On the other hand, either

θc or θd equal to -1 would imply that consumers obtain the total amount of the respective subsidy.

We can interpret 100 · |θc| as the percentage of consumer subsidy that the consumer obtains and

100 · |θc| as the percentage of dealer subsidy that the consumer obtains.

In our model specification, we use prices of similar EVs that are not receiving subsidies to

estimate the counterfactual prices of EVs that receive subsidies at a given month. In our analysis,

we implement this by incorporating the month-EV type fixed effects to control for underlying changes

in price. We assume that other vehicles in the same EV type (BEV or PHEV) that are not receiving

subsidies in a given month are a valid counterfactual for the prices that would have been obtained

in the absence of subsidies.

Table 3 reports the estimated results of Eq 1. Column 5 is our preferred model specification.

The coefficient of consumer subsidy suggests a decrease in EV prices of approximately $730 per

thousand dollars of consumer subsidy. This implies that around 73% of consumer subsidy is passed
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through to consumers. The coefficient of dealer subsidy is statistically indistinguishable from zero.

This implies that none of the dealer subsidies are passed on to consumers. We also find a negative

and significant effect of federal credit on EV prices, implying that most of the federal credit (71%)

is passed through to consumers.

We confirm these findings using an event-study approach. In the event-study approach, we

analyze only EV purchases that took place nine months before and after a consumer or dealer

subsidy reduction. To identify the effect of consumer subsidy separately, we restrict the data to a

set of EVs that experienced a $1000 reduction in consumer subsidy only in October 2018 (no change

in dealer subsidy). To identify the effect of dealer subsidy separately, we restrict the data to a set

of EVs that experienced a 50% reduction in dealer subsidy only (from $150 to $75) in October 2019

(no change in consumer subsidy). In both cases, EVs purchased in CT are the treated group, and

the same EVs purchased in other states belong to the control group. We estimate the following

model specification:

P c
jst =

k=9∑
k=−9

δk · (Treatjs · 1[t = k]) +Xjt + µj + µt + µs + ϵjts (2)

Our dependent variable is the out-of-pocket price consumers pay for vehicle j at time t in state

s. t denotes months since the reduction of one of the subsidies, meaning t=0 for treatment month,

t is negative for before-treatment months, and t is positive for after-treatment months. Treatjs is

a binary variable equal to 1 for EVs purchased in CT (treated state) and 0 for EVs purchased in

other states. 1[t = k] is a binary variable for each time period. Xjt include federal credit amount

and MSRP. µs are state fixed effects. µj are make-model fixed effects. µt are month fixed effects.

Our parameters of interest are the δk. δ−9, δ−8, ..., δ−2 denote the effect for months before one of

the subsidies decreases. Similarly, δ0, δ1, ..., δ9 denote the effect for months after one of the subsidies

decreases. We omit the effect at t=-1, and thus, when interpreting the results, everything is relative

to that omitted effect.

Figure 5 shows the estimated coefficients of Eq 2 where a subset of EVs saw a $1000 reduction

in consumer subsidy only. We did not see many changes in EV prices for a few months before the

reduction of consumer subsidies. Once the reduction occurs, we see significant EV price increases

two months later. Before the subsidy reduction, the average price difference between the treated

and control groups is approximately $1,067. This difference increases to $1,640 after the consumer

subsidy reduction. In other words, a $1,000 decrease in consumer subsidy results in $571 increase

in EV prices. This implies that the consumer obtains nearly 60% of the consumer subsidy, which

is in the 95% confidence interval of the effect of consumer subsidy found in the previous regression.

The result of this event-study approach confirms our finding that consumers obtain the majority of

consumer subsidies.

Figure 6 plots the estimated coefficients of Eq 2 where a subset of EVs saw a 50% reduction in

dealer subsidy from $150 to $75. When the dealer subsidy reduction takes effect, we do not see any

significant changes in EV prices. In other words, a 50% decrease in dealer subsidy results in zero

change in EV prices. This confirms our previous finding that consumers do not obtain any part of

the dealer subsidy.
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4.2 EV Sales

In this section, we study the extent to which consumer and dealer subsidies affect EV purchases.

We aggregate data to vehicle-month-state level where a vehicle is now defined as combination of

make-model (e.g. Chevrolet Bolt). We estimate the following model specification to identify the

effects of consumer and dealer subsidies on EV sales:

log(Sales Per Capjst) = αcCustSubjst+αdDealerSubjst+β1FedCreditjt+β2Xjst+µJs+µJt+ϵjst

(3)

Our dependent variable, denoted by log(Sales Per Capjst), is the log of electric vehicle j sales per

thousand residents in state s in month t. CustSubjst and DealerSubjst are the consumer and dealer

subsidy amount available for vehicle j at month t in state s. Since most EVs during this time are

also eligible for federal credit, we include the amount of federal credit as a control variable. Xjst is

a vector of control variables including car characteristics (log(horsepower/curb weight), years since

vehicle introduction, body type, drive type), number of available charging stations, dollar-per-mile,

state direct sales policy and state demographics (per capita income and population). µJs denotes

state-make fixed effects. µJt denotes month-make fixed effects. ϵjst denotes the error term. We

allow each state to have a separate time-invariant preference for each EV brand with state-make

fixed effects. We control for national trends in vehicle sales, vehicle availability, EV policies, and

macroeconomics by incorporating month-make fixed effects.

Our parameters of interest are αc and αd. αc denotes the percentage change in EV sales per

capita for a $1,000 consumer subsidy. Similarly, αd denotes the percentage change in EV sales per

capita for a $1,000 dealer subsidy. We identify these two coefficients off cross-state variation in EV

brand sales trends.

Table 4 presents the estimated results for Eq 3 on various sets of explanatory variables. Column 3

is our preferred specification. The results suggest an increase in per capita EV sales of approximately

4.5% per thousand dollars of consumer subsidy. This estimate is positive, statistically significant,

and robust across different specifications. However, we do not find a statistically significant effect of

dealer subsidy on EV sales. Therefore, we cannot reject the hypothesis that dealer subsidy has no

effect on EV sales. Unsurprisingly, we find strong evidence that federal credit is positively correlated

with EV adoption. A $1,000 increase in federal credit is associated with a 4.2% increase in EV sales.

We further confirm our findings from this model specification by using an event-study approach.

In the event-study approach, we analyze only EV purchases that took place nine months before and

after a consumer or dealer subsidy reduction. To identify the effect of consumer subsidy separately,

we restrict the data to a set of EVs that experienced a $1000 reduction in consumer subsidy only

in October 2018 (no change in dealer subsidy). To separately identify the effect of dealer subsidy,

we restrict the data to a set of EVs that experienced a 50% reduction in dealer subsidy only (from

$150 to $75) in October 2019 (no change in consumer subsidy). In both cases, EVs purchased in

CT are the treated group, and the same EVs purchased in other states belong to the control group.

We estimate the following model specification:

log(Sales Per Capjst) =

k=9∑
k=−9

δk · (Treatjs · 1[t = k]) +Xjst + µj + µt + µs + ϵjts (4)

16



The dependent variable, denoted by log(Sales Per Capjst), is the log of electric vehicle j sales per

thousand residents in state s in time t. t denotes months since the reduction of one of the subsidies,

meaning t=0 for treatment month, t is negative for before-treatment months, and t is positive for

after-treatment months. Treatjs is a binary variable equal to 1 for EVs purchased in CT (treated

state) and 0 for EVs purchased in other states. 1[t = k] is a binary variable for each time period.

Xjst is a vector of control variables, some of which are defined by only j and t (federal credit),

some depend on s and t (number of charging stations, direct sales dummies, income per capita,

population) and some depend on all three (dollar-per-mile). µj are make-model fixed effects. µt are

month fixed effects. µs are state fixed effects.

Our parameters of interest are the δk. δ−9, δ−8, ..., δ−2 denote the effect for months before one of

the subsidies decreases. Similarly, δ0, δ1, ..., δ9 denote the effect for months after one of the subsidies

decreases. We omit the effect at t=-1, and thus, when interpreting the results, everything is relative

to that omitted effect.

Figure 5 plots the estimated coefficients of Eq 4 in the case where a subset of EVs saw a $1000
reduction in consumer subsidy only. We do not observe significant changes in EV sales for many

months before the reduction of consumer subsidy. After the reduction takes place, there are sig-

nificant reductions in EV sales starting in month 3. On average, before the subsidy reduction, the

difference in average per capita EV sales between the treated and control groups is 2.6%. This dif-

ference is -2.7% after the consumer subsidy reduction. In other words, a $1000 decrease in consumer

subsidy results in a 5.6% decrease in per capita EV sales. This estimate is within the 95% confidence

interval of the effect of consumer subsidy on EV sales in Eq 3. This result confirms that consumer

subsidies significantly increase EV adoption.

Figure 6 illustrates the estimated coefficients from Equation 4, focusing on a scenario where a

subset of EVs experienced a 50% reduction in dealer subsidies, dropping from $150 to $75. Despite

this reduction, there are no noticeable changes in per capita EV sales. In other words, a 50%

decrease in dealer subsidies leads to no measurable impact on EV adoption. This reinforces our

earlier conclusion that dealer subsidies have a negligible effect on promoting EV adoption

The results from the reduced-form model highlight the distinct impacts of consumer and dealer

subsidies on EV market outcomes. Specifically, a reduction in consumer subsidies leads to significant

price increases and a noticeable drop in EV adoption, underlining their effectiveness in influencing

consumer behavior and market outcomes. On the other hand, dealer subsidies appear to have little

to no effect on prices or sales, suggesting they are less effective tools for promoting EV adoption.

This sets the stage for a deeper inquiry into the underlying mechanisms and the potential for more

targeted subsidy allocation to optimize both economic and environmental objectives.
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Table 3: Effect of Consumer and Dealer Incentive on EV Price

(1) (2) (3) (4) (5)
Net Price Net Price Net Price Net Price Net Price

Consumer Incentive -0.613∗∗∗ -0.636∗∗∗ -0.764∗∗∗ -0.708∗∗∗ -0.730∗∗∗

(0.113) (0.110) (0.118) (0.121) (0.117)

Dealer Incentive 7.430 7.654 5.363 4.136 4.268
(7.313) (7.340) (7.100) (7.206) (7.116)

Federal Credit -0.783∗∗∗ -0.732∗∗∗ -0.745∗∗∗ -0.711∗∗∗ -0.711∗∗∗

(0.0430) (0.0641) (0.0706) (0.0717) (0.0761)

MSRP 0.661∗∗∗ 0.661∗∗∗ 0.658∗∗∗ 0.467∗∗∗ 0.472∗∗∗

(0.0126) (0.0126) (0.0143) (0.0303) (0.0292)

Years since intro -0.748 -0.742 -0.712 -0.706
(0.460) (0.463) (0.461) (0.463)

Charging Station 0.00223∗∗∗ 0.00225∗∗∗ 0.00226∗∗∗

(0.000422) (0.000390) (0.000391)

Log(Horsepower/Curbweight) 11.86∗∗∗ 12.16∗∗∗

(1.395) (1.577)

Constant 20.15∗∗∗ 19.94∗∗∗ 14.14∗∗∗ 55.13∗∗∗ 55.65∗∗∗

(0.634) (0.681) (0.706) (5.618) (5.822)
Month×EV-type FE Y Y Y Y Y
State FE Y Y Y Y Y
Make-model FE Y Y Y Y Y
Body-type FE Y
Drive-type FE Y
Observations 180896 180896 180896 180896 180896
Mean Net Price 51.51 51.51 51.51 51.51 51.51
R2 0.825 0.825 0.826 0.831 0.831

Notes: ∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01. Standard errors clustered at the state level. This table
reports the effects of consumer and dealer incentives on consumer’s out-of-pocket prices, which equal
transaction prices less consumer subsidy and federal credit. Column 5 is our preferred model specification,
corresponding to Eq (1).
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Table 4: Effect of Consumer and Dealer incentive on EV Sales

(1) (2) (3)
log(sales per capita) log(sales per capita) log(sales per capita)

Consumer Incentive 0.0641∗∗∗ 0.0440∗∗ 0.0446∗∗

(0.0152) (0.0170) (0.0185)

Dealer Incentive 0.220 0.319 0.364
(0.365) (0.455) (0.455)

Federal Credit 0.0474∗∗∗ 0.0415∗∗∗ 0.0415∗∗∗

(0.00935) (0.00709) (0.00710)

Years since intro -0.400∗∗∗ -0.408∗∗∗ -0.408∗∗∗

(0.0601) (0.0603) (0.0600)

Log(Horsepower/Curbweight) -0.579∗∗∗ -0.588∗∗∗ -0.589∗∗∗

(0.144) (0.144) (0.143)

Charging Station -0.0000677∗∗∗ -0.0000393
(0.0000187) (0.0000297)

Dollar-per-mile -1.366∗ -1.377
(0.735) (0.756)

Income per cap -0.0334∗

(0.0168)

Population -0.00000827
(0.0000899)

Constant -9.045∗∗∗ -8.722∗∗∗ -6.766∗∗∗

(0.411) (0.389) (1.468)
State × Make FE Y Y Y
Make × Month FE Y Y Y
Bodytype Y Y Y
Drivetype Y Y Y
Observations 18183 17854 17854
R2 0.658 0.659 0.660

Notes: ∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01. Standard errors clustered at the state level. This table reports the
effects of consumer and dealer incentives on per capita EV sales. Column 3 is our preferred model specification,
corresponding to Eq (3).
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Figure 5: Event-Study: Effects of Consumer Incentive Reduction

(a) EV Prices

(b) EV Sales

Note: The figures above plot estimates from Eq.(2) and Eq.(4) and show the difference in EV prices and sales between

treated and control states in the months leading up to and after the $1,000 reduction in consumer incentive. To

separately identify the effect of consumer incentives, we restrict the data to a set of EVs that experienced a $1000
reduction in consumer subsidy only in October 2018 (no change in dealer incentive). The solid horizontal line denotes

a point estimate of zero. The whiskers represent 95 percent confidence intervals.
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Figure 6: Event-Study: Effects of Dealer Incentive Reduction

(a) EV Prices

(b) EV Sales

Note: The figures above plot estimates from Eq.(2) and Eq.(4) and show the difference in EV prices and sales between

treated and control states in the months leading up to and after the 50% reduction in dealer incentive. To separately

identify the effect of dealer subsidy, we restrict the data to a set of EVs that experienced a 50% reduction in dealer

subsidy only (from $150 to $75) in October 2019 (no change in consumer subsidy). The solid horizontal line denotes

a point estimate of zero. The whiskers represent 95 percent confidence intervals.
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5 Empirical Model

The reduced-form analysis suggests consumer subsidies are more effective than dealer subsidies in

reducing upfront purchasing costs and increasing EV adoption. However, we require a structural

model to further understand the mechanisms at play and explore how subsidies can be allocated

more efficiently while keeping total subsidy spending constant. This model allows us to capture more

realistic substitution patterns and incorporate the equilibrium effects on the supply side—elements

that are not fully accounted for in the linear reduced-form model.

In this section, we introduce a structural model of demand and supply for new car purchases.

This will enable us to examine the effects of both types of subsidies on dealer pricing decisions and

conduct various policy counterfactuals to identify the optimal subsidy allocation. The model focuses

on two key economic agents: heterogeneous consumers who make purchase decisions to maximize

utility and dealers who set prices to maximize profits. Additionally, the marginal cost function is

specified to allow for differential responses by dealers to consumer and dealer subsidies, as indicated

by the reduced-form results.

5.1 Vehicle Demand

Consumer vehicle demand follows the discrete-choice framework of Berry et al. (1995). Consumers

choose the vehicle, maximizing their indirect utility and exhibiting heterogeneous preferences over

prices. A market t is defined as a state observed in a month. Each consumer i chooses one of the

differentiated products j where j = 1, ..., J or chooses the outside option j = 0. The outside option

here is not buying a new vehicle. Consumer i’s indirect utility from purchasing a vehicle j is given

by:

uijt = δjt + µijt + ϵijt

uijt = αpcjt + βXjt + ξjt +Σpcjtνi +Π
pcjt
yi

+ ϵijt (5)

The mean utility, δjt, is common to all consumers within a state and month. µijt is the mean-

zero individual deviation from the mean utility. ϵijt is a consumer-specific unobserved taste shock

assumed to be i.i.d. Type-I extreme value distributed.

In the mean utility, pcjt is the consumers’ purchase price. Consumers pay a purchase price equal

to reported transaction prices less state subsidies and federal subsidies. State subsidies vary across

fuel types, vehicle models, and markets. Federal subsidies vary across fuel type, vehicle models, and

time. Xjt is a vector of product fixed effects that capture all vehicle characteristics and control

variables. ξjt is an unobserved characteristic of vehicle j in market mt.

µijt denotes individual deviation from the mean utility. In the individual deviation from the

mean utility, νi is drawn from a standard normal distribution. Individual income, denoted by yi,

follows a log-normal distribution.

Consumer i chooses vehicle j if Uijt ≥ Uij′t for all j
′
. The market share for vehicle j is obtained

by integrating over individual choices:

sjt =

∫ ∫
exp(δjt + µijt)

1 +
∑J

k=1 exp(δkt + µikt)
dF (ν)dG(y) (6)
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where F(.) is the joint CDF of the unobserved taste shocks and G(.) is the income distribution.

The observed market share is defined as sjt =
qjt
Mt

where qjt is the observed quantity of vehicle j,

and Mt is the number of consumers in each market. We defined Mt as the total number of car

registrations in a year in each state.

5.2 Vehicle Supply

We model the profit-maximizing price of multi-product dealers for each month. We take the product

and characteristics set to be given. Dealers receive the transaction price ptransjt from consumers, which

equals the consumer’s purchase price plus state and federal subsidies, pcjt + cincjt + fedjt, and the

dealer incentive directly from the state, dincjt. Dealers thus maximize profits by setting consumer

prices of all available vehicles at the state level. Dealer f’s profit maximization problem is given by:

max
pc

πft =
∑
j∈Jft

(pcjt + cincjt + fedjt + dincjt −mcjt)sjtMt (7)

This supply model accommodates the consumer and dealer incentives in CT. pcjt is the out-of-

pocket price paid by consumers, cincjt is the consumer incentive, dincjt is the dealer incentive and

fedjt is the federal credit. Then, the transaction price received by dealers is pcjt + cincjt + fedjt.

mcjt denotes the marginal cost of selling vehicle j in market t. Mt is the size of market t and sjt is

the market share. The first-order conditions can be expressed as:

dπft

dpcjt
= sjt +

∑
k∈Jft

(pckt + cinckt + fedkt + dinckt −mckt)
dskt
dpcjt

= 0 (8)

Assuming Nash Bertrand competition in prices, from the first-order conditions (Eq 9), we can

back out markups and marginal costs. Let ∆p be a JxJ matrix with entry k and l such that

∆lk = dskt

dpc
jt

if k and l are sold by the same firm and zero otherwise. The first-order conditions and

marginal cost (net of subsidies) can be rewritten as:

s+ (pc + cinc+ fed+ dinc−mc)∆p = 0 (9)

M̂C = mc− cinc− fed− dinc = pc + s∆−1
p (10)

where s is the vector of market shares. The markup is given by this term, s∆−1
p . pc is the vector

of consumers’ purchase prices. mc is the vector of marginal costs. cinc, dinc, and fed are vectors

of consumer subsidy, dealer subsidy, and federal credit, respectively. Thus, M̂C denotes marginal

costs net of state, federal, and dealer subsidies. The expression of net marginal cost implies that

an increase in either consumer or dealer subsidy is equivalent to a marginal cost decrease for the

dealers.

5.3 Marginal Cost Specification

We specify a log-linear marginal cost function. The marginal cost function is given by:

log(M̂Cjt(qjt, ωjt; θs)) = γwjt + ωjt (11)
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where wjt are vehicle characteristics and observed cost-shifters and ωjt captures unobserved

cost shocks. We let the marginal cost function depend on consumer subsidy, dealer subsidy, federal

credit, purchase time, and several observed vehicle characteristics, such as EV type, size, weight, and

battery size. By including the incentives on the right-hand side, we allow dealers to react differently

to the consumer and dealer subsidies. We also include firm, state, and drive-type fixed effects. All

remaining unobserved cost-shifters are included in the ωjt term. The vector of parameters to be

estimated is γ.

6 Estimation

In this section, we discuss the identification and estimation of the demand and cost parameters. We

first describe the demand and supply instruments used in our analysis to overcome the endogeneity

issue and identify the parameters of interest. This is followed by a discussion of our approach to

dealing with zero market share and the estimation of demand and supply models.

6.1 Identification

Estimation of the demand-side parameters suffers from an endogeneity issue. Price choices may be

correlated with unobserved vehicle characteristics. In this analysis, we hold the standard assumption

that other product characteristics besides prices are exogenous. Instruments are used to overcome

this endogeneity issue and help identify the price and random coefficients.

Gandhi and Houde (2019) pointed out that the classic BLP instruments (sums of product char-

acteristics) perform poorly and proposed differentiation IVs for demand estimation. We use two sets

of differentiation IVs.

The first set is local instruments that count products close in characteristic space. These in-

clude those considering own-firm products and those considering rival-firm products: ZD,k,local
jt =∑

l∈J\{l}{1|dkjlt| < sd(dk)}. |dkjlt| is the absolute value of the difference between products j and l in

vehicle characteristics k, sd(dk) is the standard deviation of characteristics k across all markets, and

J denotes the set of products. We build the local instruments for continuous characteristics such as

curb weight and wheelbase. In addition, we also build local instruments for a price index, which we

obtain from regressing the out-of-pocket price that the consumers pay on demand and cost shifters.

The second set is a discrete instrument that counts the number of products with the same values

of characteristics: ZD,k,discrete
jt =

∑
l∈J\{l} 1{|dkjlt| = 0} where |dkjlt| is the absolute value of the

difference between products j and l in vehicle characteristics k as before. This set of instruments

includes those considering own-firm products and those considering rival-firm products of the same

drive type, body type, and number of doors. We also create discrete instruments for EV type.

These two sets of differentiation instruments shift markups and thus help identify price sensitivity

parameters. In particular, these instruments allow a car that faces stronger competition to earn a

lower markup, and a car with little or no competition in a characteristic space would see a higher

markup due to limited substitution to similar products.

We also use another set of price instruments to identify price coefficients. These include state EV

incentives, federal EV incentives, and manufacturing wages. Federal EV subsidies vary by fuel type,

battery capacity, and over time. Conditional on fuel type and battery capacity, this instrument is
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uncorrelated with unobservables. We assume that dealers do not choose components of unobservables

based on the federal subsidy.

State EV incentives vary by state and vehicle and over time. Conditional on state fixed effects,

changes in state subsidies over time, differences in subsidies across states or vehicles, and differences

in subsidies across car models within states are uncorrelated with unobservables. To the best of

our knowledge, the timing of changes in state subsidies was not announced very far in advance.

The structure of the subsidies is also exogenous after controlling for characteristics such as range or

battery capacity.

State and product fixed effects are included in all specifications. State fixed effects help control

state-level factors that are invariant between 2018 and 2022, such as the public inclination to be

green. Product fixed effects, where a product is defined at the granular level of make-model-year-fuel,

help capture all vehicle characteristics and vehicle-level factors, such as a vehicle’s popularity.

Using the set of demand instruments allows us to identify the parameters of the demand model.

Mean utility parameters are identified by variations in market shares (across state and time) and

observed characteristics (across vehicles and time). The price coefficient δ is identified by variation

in market shares and prices across the market. The local and discrete instruments described above

help identify the random coefficient Σ and Π.

On the supply side, price choices can be correlated with unobserved marginal cost shocks. We

address this endogeneity issue by using a set of cost-shifters, including wages, fuel costs, lithium

battery prices, and state policy regarding direct car sales. We also include observed exogenous car

characteristics in the marginal cost function since these characteristics were set beforehand.

6.2 Zero market shares

This paper studies the U.S. automobile industry between 2018 and 2022 when Covid heavily dis-

rupted the industry, and thus, zero units of some new vehicles were sold in some states and time

periods. Moreover, even though not being in its inception, the electric vehicle industry in the U.S.

was growing through major changes during this period (e.g., car manufacturers expanded the num-

ber of markets where EVs are offered). This growth in the EV market results in some EV models

not being sold in some states and periods.

In this paper, we focus on new vehicle purchases, excluding any used vehicle purchases. We

assume each new make-model-year-fuel will be available for sale for approximately one year. For

example, new purchases of a 2018 vehicle are assumed to be until December 2018. Any vehicles

bought after the model year are not considered new purchases and thus are dropped in this analysis.

We define the zeros as when vehicles are available for sale but not purchased by consumers.

Vehicles not offered for sale in a market are dropped from estimation. A product is defined as not

offered for sale when the total monthly sales for this product are zero across all states in the data.

Zero shares in the demand model could pose a problem as the estimation procedure is poorly

defined. However, deleting observations with zero market shares is problematic since it alters market

structure and affects our counterfactual analyses later. One approach to deal with zero shares is

proposed by D’Haultfœuille et al. (2019). The market share is corrected as:

scjt =
qobsjt + 0.5

M
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where qobsjt is the observed number of vehicle j sold in a given market. M is the defined market

share. This approach allows us to minimize the bias of log(sjt) and thus estimate the demand model

consistently.

6.3 Estimation

The parameters to be estimated in the demand model are denoted by θd = (α, βx,Σ,Π).4 We allow

for random coefficients on prices because we believe consumer heterogeneity on prices is essential in

automobile demand. This is particularly true for EV purchases, as the purchase price is considered

the most significant barrier to adoption. We include purchase year and dollar per mile in the mean

utility. We also add state and product fixed effects in the mean utility. All the remaining unexplained

variation is captured in unobservables denoted by ξjt. We interact unobservables with the demand

instruments described in the previous section to form demand moment conditions: E[zDjtξjt] = 0.

On the supply side, the parameters to be estimated on the supply side are denoted by θs = (γ).

As mentioned in the previous section, we specify marginal cost as a function of subsidies and observed

characteristics, such as EV type, battery size, weight, and size. We also include brand, state, and

drive-type fixed effects. All remaining unobserved marginal cost shifters are collected in ωjt. From

the first-order condition, we solve for supply-side unobservable vector ωjt. We interact this vector

with the supply-side instruments to build supply moment conditions, E[zSjtωjt] = 0.

We stack the demand and supply moments to form:

g(θ) =

[
gD(θ)

gS(θ)

]
=

1

N

[∑
j,t Z

D
jt ξjt∑

j,t Z
S
jt ωjt

]

We then minimize the following GMM objective function:

min
θ

g(θ)′Wg(θ)

where W is a positive definite weighting matrix. The estimator and its econometric properties are

described in detail in Berry et al. (1995) and Berry et al. (2004).

7 Empirical Results

Table 5 reports the estimated vehicle demand parameters in the utility function. This result comes

from the full structural estimation. In the demand model, we allow consumers to have heterogeneous

sensitivity to car prices, resulting in variation in the marginal utility of these terms across consumers.

Table 5 shows the mean valuation for the price term and the individual deviation from this mean.

We find that car attributes enter the consumer utility with the expected sign. The coefficient

for price is negative and significant, suggesting consumers dislike high prices. There is significant

heterogeneity in consumers’ sensitivity to price. The negative and significant price standard devia-

tion term suggests substantial variation in how different consumers react to changes in price, with

some consumers being highly price sensitive. As expected, the interaction term between price and

4We estimate the demand parameters and marginal costs using PyBLP (Conlon and Gortmaker, 2020).
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inversed income has a negative effect. As consumers’ income increases, they become slightly less

price sensitive, which aligns with standard economic intuition.

All else equal, consumers have significantly lower demand for cars in more recent years, which

might seem counterintuitive. However, considering this study time period of 2018 to 2022 in which

the pandemic happened and negatively affected the automotive market, it is intuitive to see signifi-

cantly lower demand for cars closer to 2022. This could be due to several pandemic-related factors.

First, since the pandemic caused substantial economic downturn and uncertainty, consumers decided

not to proceed with large purchases such as cars, resulting in lower demand in later years. Second,

the pandemic significantly shifted consumers’ preferences regarding modes of transportation and

mobility needs. Thus, consumers are more likely to opt for the outside option (including used cars

or keeping current vehicles). Finally, it is well-known that the pandemic disrupted the global supply

chain, reducing the availability of new cars. Higher prices and limited consumer choices could drive

lower demand during this period. Overall, the robustness of this term suggests that the pandemic

had a measurable and significant impact on vehicle demand across the study period.

Consumers dislike higher fuel costs, as the negative coefficient in the mean utility suggests.

Overall, cars with higher fuel costs are less attractive to consumers since they drive up the overall

cost of driving a car. This implies that consumers prefer cars with lower operating costs, consistent

with the general public’s preference for fuel-efficient vehicles.

The median own-price elasticity is -6.31. Figure A1 presents the empirical cumulative distribution

of the estimated own-price elasticities. Our estimated own-price elasticity falls within the range of

estimates in prior work on demand estimation for the new car market5. Table 7 presents selected car

models’ mean own- and cross-price elasticities in 2018. Each elasticity in a column-row combination

implies the change in market share of the row vehicle as the price of the column vehicle increases

by 1%. For example, as the price of 2018 Honda Cr-V gasoline increases by 1%, the market share

of the 2018 Chevrolet Bolt EV goes up by 0.004%. Overall, the demand for new cars is relatively

elastic, suggesting consumers are sensitive to price changes.

Table 6 reports a dealer’s marginal cost estimates from Eq 11, obtained from the full structural

estimation with the demand model. On the marginal cost side, all subsidy terms negatively affect

the dealer’s marginal cost, as expected. Consumer incentives operate equivalent to a significant

reduction in dealer marginal costs, as evidenced by the negative parameter on the consumer incentive

term. For every $1,000 increase in consumer incentives, dealers adjust prices as though marginal

costs decrease by roughly 3% (approximately $1,000 on average). Since consumer incentives boost

demand for EVs (as shown in the reduced-form analysis results), dealerships can move inventory

more quickly, reduce holding costs, and increase turnover rates. This increase in dealers’ efficiency

due to consumer incentives reduces the cost of selling a car. In addition, since consumer incentives

stimulate demand for EVs, dealers might have more opportunities to negotiate better terms with

manufacturers, lowering their marginal cost.

Dealer incentives also affect dealer behavior similar to a reduction in marginal costs, though the

coefficient is not statistically significant. For every $1,000 increase in dealer incentive, the dealers

adjust prices as though marginal costs fall by 0.7% (approximately $252 on average). Dealerships

5The following list presents estimates of price elasticities from previous papers that used a similar demand model:
Beresteanu and Li (2011): -10.91; Berry et al. (1995): -3.928; Reynaert and Sallee (2021): -5.45; Klier and Linn
(2012): -2.6.
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often face several challenges6 when selling EVs, which generally make it more expensive than selling

traditional internal combustion cars. The dealer incentive is expected to lower the financial burden

for dealerships.

Other variables in the marginal cost have the expected signs and magnitudes. Like consumer

incentives, federal credits also boost demand for EVs and thus affect dealer behavior. Between 2018

and 2022, marginal costs for dealerships increased potentially due to rising input costs of vehicles

and supply chain disruption exacerbated during the pandemic period. Heavier cars are more costly

to sell because these cars are more costly to produce; thus, higher production costs are passed on to

dealerships. A negative coefficient for height implies that taller vehicles, such as SUVs and trucks,

are less costly for dealerships. These vehicles tend to have higher profit margins and faster turnover

rates due to higher popularity among consumers, resulting in reduced costs of holding and promoting

them.

Overall, selling BEVs is more costly than other fuel types, holding all else equal. This finding

aligns with economic intuition, as BEVs require high-cost components such as drivetrains and ad-

vanced battery systems, which may raise dealership procurement costs. Additionally, BEVs require

additional training, marketing, and infrastructure investments, further contributing to increased op-

erational costs. On the other hand, a larger battery size slightly reduces marginal cost for dealers,

though the coefficient is not statistically significant at the traditional statistical level. This may

reflect higher consumer demand for longer-range EVs or the fact that larger batteries often come in

higher-end EV models, which could carry a higher profit margin, allowing dealers to offset some of

the associated costs.

The marginal cost results are consistent with the reduced-form findings, providing a more detailed

understanding of the mechanisms behind the observed price and sales effects. From the marginal

cost estimates, we find that a $1,000 increase in consumer incentives affects dealers equivalently to a

3% reduction in marginal costs or approximately $1,080 on average. This translates to a 100% cost

pass-through rate. This aligns with the reduced-form results, where 74% of the consumer subsidy is

passed on to consumers through lower prices, resulting in a 4.5% increase in EV sales.

In the reduced form analysis, a $1,000 dealer incentive has no significant effect on either EV prices

or sales, and the event-study analysis similarly shows no change in EV prices or sales even as dealer

incentives are reduced by 50%. These reduced form results indicate that dealer incentives do not

substantially shift consumer-facing prices or influence purchase decisions. The supply-side results

reinforce this finding. While the estimates suggest that a $1,000 dealer incentive is equivalent to a

marginal cost reduction of 0.7% (or approximately $252), the effect is not statistically significant due

to the relatively large standard error. This lack of significance suggests that dealer incentives do not

meaningfully affect dealer behavior in a way that would translate into lower prices for consumers.

Several factors may explain why dealer incentives fail to affect dealer behavior and directly affect

prices and adoption. First, the average dealer incentive among eligible EVs is relatively small at

$114, which represents less than 0.24% of the average marginal cost of an EV ($47,105) and only a

fraction of the average markup of an EV ($6,350). Given the size of the dealer incentive relative to

these more significant cost components, the incentive may simply be too small to induce dealerships

to adjust their pricing strategies in any significant way.

6Dealers face higher upfront costs for EVs due to production and holding costs, promotional expenses, and
investments in infrastructure like test drives and charging stations. Dealer incentives help reduce these financial
burdens by lowering acquisition, promotion, and sales costs
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A specific comparison between the 2019 Chevrolet Bolt EV and the 2019 Chevrolet Blazer gaso-

line model provides additional context for why dealer incentives may not be effective. The Chevrolet

Bolt EV has a markup of $6,133 (MSRP = $39,173), while the gasoline-powered Chevrolet Blazer has

a slightly higher markup of $6,252 (MSRP = $39,150). Even if we add the average dealer incentive

of $114 to the markup of the Bolt EV, the total markup would not be significantly higher than that

of the gasoline model. This suggests that the dealer incentive is insufficient to meaningfully influence

dealerships’ preferences toward selling EVs over gasoline vehicles. Given the difference in markups

between EVs and gasoline cars, dealer incentives fail to nudge dealerships toward promoting EV

sales over traditional gasoline models.

Other factors include heterogeneity across dealerships. Dealer incentives often target specific EV

models based on criteria like MSRP caps, which can obscure their overall average effect across all

dealerships. For instance, while Chevrolet EV models are consistently eligible for dealer incentives,

none of the Audi EV models qualify, resulting in a more substantial impact on Chevrolet dealerships

and a negligible effect on Audi dealerships. This discrepancy can lead to statistical insignificance

when averaging the impacts across all manufacturers.

Overall, these findings on marginal cost function reinforce our reduced-form analysis result. Con-

sumer subsidies play a crucial role in shaping dealer behavior, leading to lower prices for consumers

and ultimately driving greater adoption of electric vehicles (EVs). In contrast, dealer subsidies

don’t have meaningful impacts on dealer behavior or consumer prices and adoption decisions. The

asymmetric information on dealer subsidies could explain the difference in market outcomes between

the two subsidies. In our setting, consumer subsidies are explicitly advertised and communicated to

consumers and dealers (Figure A4). Conversely, dealer subsidies are often not disclosed publicly to

consumers but are well-known among dealerships (Figure A5).

According to Ausubel et al. (2002), a negotiating party with incomplete information about its

opponent would obtain a smaller share of surplus in the bargaining process compared to if they receive

the full information. Based on this theory, buyers would obtain a larger share of consumer subsidies,

which they are well-informed about, and they would obtain a smaller share of dealer subsidies, which

they are unlikely to know about. This matches our findings, and thus, the asymmetric information

on dealer subsidies could be one of the explanations for the distinct impacts of consumer and dealer

subsidies.
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Table 5: Vehicle Demand Estimation Results

Coefficient Standard Error
Demand: Means
Price -0.173 (0.013)
Purchase year -0.310 (0.006)
Dollar-per-mile -1.937 (1.191)

Demand: St. Dev
Price -1.132 (0.063)

Demand: Interaction
Price/Income -1.669 (1.539)

Median own-price elasticity -6.31

Notes: This table reports the estimated coefficients and standard
errors for new vehicle demand using GMM estimation. Aggregated
data include 363,100 observations where an observation is product
(j) in state (s) and month (m). State and Product Fixed Effects
are included in vehicle demand.

Table 6: Vehicle Supply Estimation Results

Coefficient Standard Error
Consumer Incentive -0.030 (0.011)
Dealer Incentive -0.007 (0.133)
Federal Credit -0.018 (0.001)
Purchase year 0.082 (0.00003)
Battery size -0.0001 (0.0002)
Curb weight 0.0003 (0.00001)
Height -0.010 (0.0002)
BEV 0.037 (0.014)

Notes: This table reports the estimated coefficients and
standard errors for the vehicle supply side using GMM es-
timation. State-, Make-, and Drive type Fixed Effects are
included on vehicle supply side. The outcome variable is
the logarithm of marginal cost.

Table 7: Mean own- and cross-price elasticities for selected vehicles

Chevrolet Honda Honda Ford Fusion Toyota Tesla Chevrolet
Bolt EV Clarity PHEV CrV Gasoline Energi PHEV Rav4 Hybrid Model3 EV Volt PHEV

Chevrolet Bolt EV -4.39477 0.00044 0.00917 0.00006 0.00162 0.00256 0.00025
Honda Clarity PHEV 0.00013 -3.09393 0.00687 0.00005 0.00128 0.00234 0.0002
Honda CrV Gasoline 0.00013 0.00038 -4.39870 0.00006 0.00136 0.00267 0.00022
Ford Fusion Energi PHEV 0.00013 0.00043 0.00903 -4.05515 0.00159 0.00241 0.00025
Toyota Rav4 Hybrid 0.00014 0.00039 0.00739 0.00006 -4.84541 0.00278 0.00022
Tesla Model3 EV 0.00015 0.00041 0.00818 0.00006 0.00156 -7.46685 0.00024
Chevrolet Volt PHEV 0.00013 0.00040 0.00753 0.00005 0.00140 0.00263 -3.63936

Notes: This table reports the mean own- and cross-price elasticities of selected vehicle of different fuel types in 2018.
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8 Counterfactual

We used the estimated demand and supply models to determine how to allocate the subsidy better

to maximize EV adoption by conducting several policy counterfactuals. For each counterfactual

policy, we use the following procedure. First, we alter the amount of subsidy to a counterfactual

level. Keeping the market structure the same, we calculate new marginal costs and equilibrium

prices, allowing us to calculate the equilibrium market shares. Then, we calculate the number of

vehicles sold by multiplying the equilibrium market shares by the market size.

8.1 The Role of Consumer Incentive

This section evaluates the effect of consumer incentives in the CHEAPR program on EV adoption,

vehicle prices, and environmental outcomes by conducting several counterfactual policy simulations.

First, we explore market outcomes in the absence of consumer incentives to gauge the reliance of

EV markets on these subsidies. We then analyze the impact of increasing the budget for consumer

incentives based on findings that consumer subsidies are more effective than dealer incentives in

reducing prices and encouraging EV purchases. Lastly, we examine various redistribution strategies

for the additional funds: (1) targeting EVs with high price elasticity among low-income populations,

(2) prioritizing EVs with high North American value-added content, and (3) focusing on EVs with

the highest overall price elasticity. Each scenario provides insights into how to allocate subsidies

best to maximize EV adoption while balancing broader economic and environmental objectives.

Table 8 shows the outcomes for these scenarios7. The “Status quo” column includes simulated

outcomes based on structural model estimates. Figure A2 confirms no significant difference between

observed and simulated data, indicating that the model fits the real-world data well. The average

out-of-pocket price for EVs (including state and federal subsidies) is $44,541, and non-EVs are

priced lower at $40,733. This suggested that CHEAPR’s consumer subsidy and federal credit play

a significant role in bridging the price gap between EVs and ICE vehicles and thus make EVs more

competitive with traditional ICE cars.

In the absence of consumer subsidy, the price of EVs rises by $394 (0.88%), leading to a decline

in EV sales by 7.11% as fewer consumers are willing to bear the higher upfront costs. Given the

findings that consumer incentives reduce prices and increase EV purchases, we explore the impacts

of a slight increase in the consumer incentive budget equal to the dealer incentive budget. We

first distribute this additional budget equally across all eligible EVs. On average, each eligible EV

receives an additional $29 of consumer subsidy, resulting in a slight decrease in prices (0.05%) and

a small rise in adoption (0.49%).

When reallocating the additional budget to focus on low-income households, we observe a modest

increase in EV sales (0.57%), surpassing the gains from a general increase in consumer incentives,

as shown previously for a lower level of consumer incentive. This policy scenario taps into the

greater price sensitivity of low-income consumers. Since these consumers are more responsive to

price changes due to budget constraints, directing subsidies toward them not only increases EV

adoption but also promotes equity. From a welfare perspective, this approach ensures that the

7This table reports annual average sales, consumer price, consumer incentive, consumer surplus, CO2 emissions
and CO2 damages. Following Conlon and Gortmaker (2020), consumer surplus is calculated using the following

equation: CSit = log(1+
∑

j∈Jt
expVijt)/(

−∂Vi1t
∂p1t

) where −∂Vi1t
∂p1t

is the derivative of utility for the first product with

respect to its price. And Vijt = δjt + µijt
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benefits of subsidies are distributed more equitably across income groups, potentially democratizing

access to cleaner technology.

Another scenario involves redistributing the additional budget to support EVs with a high per-

centage of North American value-added content8. This approach results in a similar increase in

EV sales by 0.57%, comparable to the low-income household targeting scenario. However, the en-

vironmental impact is slightly more favorable, with CO2 damages decreasing marginally more than

the low-income household targeting case. This policy has broader industrial implications. Support-

ing vehicles with high North American content not only boosts EV adoption but also fosters local

economic growth by encouraging the production and sale of vehicles with a significant proportion

of domestic parts. This may align with policymakers’ objectives of promoting domestic industries

while simultaneously addressing environmental goals.

The most economically efficient scenario occurs when subsidies are targeted at EVs with high

own-price elasticity. This approach leads to the highest adoption increase (0.59%). From an economic

standpoint, this scenario maximizes the market response per dollar spent. Since high own-price elas-

ticity indicates that consumers are more sensitive to price reductions, reallocating subsidies to these

vehicles leads to the most significant boost in adoption for the same amount of subsidy spending.

This option is particularly attractive when the objective is to optimize the cost-effectiveness of

government spending on subsidies.

This analysis highlights the significant role of consumer incentives in reducing vehicle prices

and boosting sales, reinforcing the importance of targeting consumers directly to drive adoption.

Additionally, the redistribution of dealer incentive total budget can be tailored to meet different

policy objectives, including cost-effectiveness, equity, and domestic economic and environmental

goals.

8the percentage of U.S./Canadian equipment (parts) content. Data from the National Highway Traffic Safety
Administration’s Part 583 American Automobile Labeling Act Reports.
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Table 8: Counterfactual Analysis of the Impact of Consumer Incentives

Counterfactuals
Status (1) (2) (3) (4) (5)
quo No Inc Eligible EVs Low-income NA-value-added Price-elastic

Sales
EV 4,720 -335.8 23.1 27.0 26.7 27.9

(↓ 7.11%) (↑ 0.49%) (↑ 0.57%) (↑ 0.57%) (↑ 0.59%)

PHEV 1,697 -81.1 6.9 5.3 1.8 5.5
(↓4.78%) (↑0.41%) (↑0.31%) (↑0.10%) (↑0.32%)

BEV 3,023 -254.7 16.2 21.7 24.9 22.5
(↓8.42%) (↑0.54%) (↑0.72%) (↑0.83%) (↑0.74%)

Non-EV 121,868 25.3 -1.8 -2.1 -2.1 -2.2

Consumer Price
EV 44,541 393.9 -21.4 -17.9 -14.3 -15.3

(↑0.88%) (↓0.05%) (↓0.04%) (↓0.03%) (↓0.03%)

PHEV 42,968 225.4 -19.9 -16.0 -8.5 -15.5
(↑0.52%) (↓0.05%) (↓0.04%) (↓0.02%) (↓0.04%)

BEV 46,341 642.9 -23.0 -19.5 -23.1 -13.6
(↑1.39%) (↓0.05%) (↓0.04%) (↓0.05%) (↓0.03%)

Non-EV 40,733 0.06 -0.01 -0.01 -0.01 -0.01

Consumer Incentive
EV 537 -537 29.0 18.3 18.0 14.5

PHEV 320 -320 27.5 16.9 12.0 15.9
BEV 885 -885 31.3 19.3 27.3 11.3

Total Spending ($) 14,424,379 -13,533,928 890,451 890,451 890,451 890,451
(↓93.83%) (↑6.17%) (↑6.17%) (↑6.17%) (↑6.17%)

Consumer Surplus ($) 4,439 -12.2 0.9 1.1 1.0 1.1
(↓0.27%) (↑0.02%) (↑0.02%) (↑0.02%) (↑0.02%)

CO2 Emissions (tons) 728,382 855.2 -59.1 -68.2 -72.5 -70.4
(↑0.117%) (↓0.008%) (↓0.009%) (↓0.010%) (↓0.010%)

CO2 Damages ($) 37,147,489 43,612.7 -3,016.4 -3,476.9 -3,698.4 -3,590.8

Notes: This table summarizes results from the counterfactual analysis that examines the market outcomes in the absence of
consumer incentives (column 1) and in the scenarios where the budget for consumer incentives slightly increases (columns 2-
5). We examine various redistribution strategies for the additional funds: distributing equally among eligible EVs (column 2),
targeting EVs with high price elasticity among low-income populations (column 3), prioritizing EVs with high North American
value-added content (column 4), and focusing on EVs with the highest overall price elasticity (column 5). Sales, consumer price,
consumer incentive, consumer surplus, CO2 emissions and CO2 damages are means values across years.
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8.2 Redesign consumer subsidy keeping levels of consumer incentive bud-

get fixed

In this analysis, we focus on redesigning consumer incentives for EVs while keeping the overall levels

of state government spending on consumer incentives fixed. Given that the dealer incentives are

statistically noisy and that this incentive represents only a small portion (roughly 6%) of the total

expenditure on EV subsidies, we shift our attention toward optimizing consumer-side incentives.

The objective is to find an alternative allocation of consumer incentives to drive higher sales of EVs

without increasing its total budget. Through several policy counterfactuals, we evaluate different

distributions of consumer incentives and compare them to the current design with respect to several

market outcomes. This analysis allows us to identify the most cost-effective subsidy design that

leads to higher EV adoption and environmental sustainability9

This counterfactual analysis maintains several critical assumptions: (1) the total government

spending on consumer subsidies remains constant, (2) the program’s existing MSRP cap for eligibility

is kept unchanged, and (3) the market structure remains unchanged. Table 9 summarizes the results

under various counterfactual policies. The “Status quo” column includes simulated outcomes based

on structural model estimates as before. Columns 1 and 2 report market outcomes when only BEVs

or only PHEVs are eligible for consumer incentives. Columns 3-4 represent scenarios where consumer

incentives are reallocated to EVs and BEVs, respectively, whose prices consumers are most sensitive

to. Column 5 prioritizes EVs with high North American value-added content, and column 6 targets

EVs with high own-price elasticity among low-income households.

From our previous counterfactual analysis, we’ve learned that the current consumer incentive

design has increased EV sales by 7.11%, reduced CO2 emissions by 855.2 tons, and decreased CO2

damages by $43,613. These findings serve as a benchmark for comparing counterfactual outcomes.

First, we evaluate the effectiveness of consumer subsidy designs that target two different types

of electric vehicles (EVs): battery electric vehicles (BEVs) and plug-in hybrid electric vehicles

(PHEVs). Understanding how the allocation of consumer subsidies influences market outcomes

is crucial for policymakers aiming to balance EV adoption with environmental goals. BEVs are

fully electric and have zero tailpipe emissions, making them crucial to long-term strategies to re-

duce greenhouse gas emissions. While offering some of the benefits of electrification, PHEVs still

rely partially on fossil fuels, thus emitting more CO2 per mile compared to BEVs. By conduct-

ing counterfactuals, we can assess which subsidy structure—targeting BEVs or PHEVs—maximizes

EV adoption, minimizes CO2 emissions, and ensures the most cost-effective use of public funds.

These insights are critical as governments seek to design EV incentive programs that accelerate the

shift toward cleaner technologies and achieve environmental targets without exceeding budgetary

constraints.

In column 1, we consider a policy counterfactual where consumer subsidies are reallocated exclu-

sively to BEVs while keeping the budget constant. PHEVs would receive no consumer subsidy, and

9For each vehicle, we estimate the usage of each fuel type (gasoline, diesel, or electricity) and then convert fuel
usage to CO2 emission. Assuming car lifetime to be 10 years and lifetime miles to be 150,000 (following Xing et al.
(2021), we estimate that each vehicle is driven 15,000 miles per year. Gasoline or diesel usage is miles per year
divided by the vehicle’s mpg from gasoline/diesel and CO2 emission from these fuels is then calculated by multiplying
gasoline/diesel usage by grams of CO2 for gasoline/diesel. Electricity usage is miles per year divided by the vehicle’s
mpg from electricity and CO2 emission from electricity usage is calculated by multiplying electricity usage by marginal
CO2 emission (lb/kWh) obtained from Holland et al. (2022). The total CO2 emission for each vehicle is then the sum
of the percentage that the vehicle uses each fuel type times emissions from the respective fuel type.
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the spending on PHEVs would be distributed equally among eligible BEVs. On average, each BEV

would receive an additional $243.8. This adjustment in the subsidy strategy brings about notable

changes in market outcomes. The marginal cost for BEVs decreases by 0.73%, and the price of

BEVs falls by 0.64%, leading to a 5.30% rise in BEV sales.

On the other hand, the complete removal of PHEV subsidies leads to a 0.61% increase in marginal

cost, a 0.52% increase in prices, and a 4.82% drop in sales for PHEV. Overall, EV sales increase by

1.66%, primarily driven by the substantial boost in BEV sales, as the reduction in their price makes

them more attractive to consumers. Annual CO2 emission decreases slightly by 245 tons (equivalent

to a reduction in CO2 damage10 of $12,484). Overall, this design outperforms the current design of

consumer incentives on both cost-effective and environmental aspects.

The decomposition of effects (Table A1) shows that if we only reduce the PHEV subsidy, the

price of EVs increases by 0.31%, and sales decrease by 1.72%, reflecting the impact of reduced

affordability for PHEVs. However, the “Difference” column, which isolates the impact of increasing

BEV subsidies, indicates that the price of EVs falls by 0.28%, and EV sales rise by 3.38%, which more

than compensates for the loss due to the complete removal of PHEV subsidies. This decomposition

illustrates that while removing PHEV subsidies negatively affects the market, the targeted increase in

BEV subsidies generates enough additional sales to offset these losses, leading to a net positive effect

on overall EV adoption. Thus, the policy successfully drives EV growth, primarily by concentrating

incentives on the segment consumers respond to most, even as some trade-offs are made within the

broader EV market.

By contrast, targeting subsidies solely toward PHEVs results in opposite market outcomes. In

column 2, we explore the effects of reallocating all consumer subsidies to PHEVs while completely

removing subsidies for BEVs. That is, BEVs would receive no consumer subsidy, and the total

spending on BEVs would then be redistributed among eligible PHEVs. On average, each PHEV

would receive an additional $918. The marginal cost and prices for EVs reduce by 0.89% and 0.78%,

respectively. However, the overall effect shows a slight decline in EV sales of 0.30%, primarily

driven by the drop in sales due to the removal of BEV subsidies (Table A2). Furthermore, shifting

the financial support to PHEVs increases CO2 emissions (507 tons) and damages ($25,874). This

suggests that subsidizing BEVs delivers not only stronger environmental benefits but also greater

market adoption compared to the current structure or a PHEV-focused incentive. Therefore, the

BEV-only policy is more aligned with long-term sustainability and environmental objectives, making

it the preferred option for policymakers focused on both cost-effectiveness and emissions reduction.

Next, we assess the impact of reallocating subsidies to vehicles whose prices are most sensitive to

consumer demand (columns 3 and 4). Given that consumers are more responsive to price changes in

some EV models than others, this counterfactual examines how much we can improve EV adoption

and environmental outcomes when allocating subsidies to the top price-sensitive models. EV models

with average own-price elasticity in the bottom 50% would receive no consumer subsidies. The fixed

budget is then distributed equally among targeted EVs. On average, in this scenario, each targeted

EV would receive a consumer incentive of $261 (column 3), and each targeted BEV would receive a

consumer incentive of $98 (column 4).

In these scenarios, the results indicate that targeting price-sensitive EVs leads to substantial

10CO2 damage is calculated by multiplying CO2 emissions by the social cost of carbon obtained from Holland et al.
(2022)
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market gains, whether focusing on all EVs or specifically BEVs. Reallocating subsidies to all price-

sensitive EVs (column 3) results in a 3.3% increase in the EV count compared to the current consumer

subsidy design. Additionally, this design reduces CO2 damage by $20,252 and CO2 emissions by 397

tons, improving the current incentive design. In addition, focusing subsidies solely on price-sensitive

BEVs (column 4) provides even more significant environmental benefits, reducing CO2 damages by

$29,037 and CO2 emissions by 569 tons. Vehicle sales increase by 3.67%, making this approach more

environmentally effective and cost-efficient in driving EV adoption than the current subsidy design.

Refer to Tables A3 and A4 for the decomposition effects of these two counterfactuals.

Another potential strategy involves reallocating subsidies to EVs with high North American

value-added content (column 5). This policy not only supports the adoption of cleaner technologies

but also promotes domestic industries, fostering economic growth within the North American auto

sector. In this scenario, the EV adoption increases by 2.52%, substantially improving the current

design. CO2 damages fall by $20,519, and emissions decrease by 402 tons compared to the current

subsidy design. While the outcomes are slightly less favorable than the price-elasticity targeting

approach (columns 3 & 4), this strategy may appeal to policymakers interested in boosting local

manufacturing alongside environmental goals. For the decomposition effect of this counterfactual,

refer to Table A5.

The final counterfactual (column 6) explores the impact of targeting low-income households,

which are often more price-sensitive due to budget constraints. In this scenario, EV adoption in-

creases by 2.55%, and CO2 damages decline by $16,333—improvements over the current design. This

redistribution strategy promotes EV adoption, reduces emissions, and enhances equity by ensuring

low-income households access cleaner vehicle technologies. Given that lower-income households are

more likely to forgo EV purchases without subsidies, this approach addresses issues of accessibility

and fairness in EV adoption, all while achieving superior environmental benefits compared to the

current structure. For the decomposition effect of this counterfactual, refer to Table A6.

The counterfactual analysis highlights the potential for optimizing the design of EV consumer

subsidies to achieve higher adoption rates and more significant environmental benefits without in-

creasing the total budget. Specifically, targeting BEVs increases overall EV sales and significantly

reduces CO2 emissions, offering a more cost-effective approach to lowering emissions. The compar-

ison with the current design reveals that reallocating subsidies, especially to price-sensitive BEVs

or EVs, generates a further boost in EV adoption and environmental sustainability. Additionally,

targeting EVs with high North American value-added content and low-income households achieves

domestic economic growth and equity while generating adoption and environmental benefits.
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Table 9: Counterfactual Analysis of Consumer Incentive Spending Redistribution

Counterfactuals
(1) (2) (3) (4) (5) (6)

Status Target Target Price-elastic Price-elastic Top NA Low
quo BEVs PHEVs EVs BEVs value-added income

Sales
EV 4,720 78.5 -14.2 156.0 173.4 119.0 120.4

(↑1.66%) (↓0.3%) (↑3.3%) (↑3.67%) (↑2.52%) (↑2.55%)

PHEV 1,697 -81.7 241.5 -5.2 -82.1 -57.0 -7.0
(↓4.82%) (↑14.23%) (↓0.31%) (↓4.84%) (↓3.36%) (↓0.41%)

BEV 3,023 160.2 -255.7 161.1 255.5 176.0 127.5
(↑5.30%) (↓8.46%) (↑5.33%) (↑8.45%) (↑5.82%) (↑4.22%)

Non-EV 121,868 -7.9 -0.1 -15.8 -17.6 -11.5 -11.8

Consumer Price ($)
EV 44541 13.8 -346.4 88.3 264.4 186.6 103.1

(↑0.03%) (↓0.78%) (↑0.20%) (↑0.59%) (↑0.42%) (↑0.23%)

PHEV 42968 225.2 -1023.9 -109.2 225.1 100.3 -43.5
(↑0.52%) (↓2.38%) (↓0.25%) (↑0.52%) (↑0.23%) (↓0.10%)

BEV 46341 -296.5 642.8 402.5 354.2 315.2 340.5
(↓0.64%) (↑1.39%) (↑0.87%) (↑0.76%) (↑0.68%) (↑0.73%)

Non-EV 40733 -0.1 0.02 -0.2 -0.2 -0.1 -0.1

Marginal Cost ($)
EV 38,236 13.5 -341.8 86.9 260.6 183.9 101.6

(↑0.04%) (↓0.89%) (↑0.23%) (↑0.68%) (↑0.48%) (↑0.27%)

PHEV 36,682 222.1 -1010.1 -107.7 222.1 98.9 -42.9
(↑0.61%) (↓2.75%) (↓0.29%) (↑0.61%) (↑0.27%) (↓0.12%)

BEV 40,014 -292.7 634.0 396.6 348.8 310.6 335.5
(↓0.73%) (↑1.58%) (↑0.99%) (↑0.87%) (↑0.78%) (↑0.84%)

Consumer Incentive
EV 537 -98.2 205.7 -275.4 -438.6 -289.6 -251.2

PHEV 320 -320.3 917.9 -16.3 -320.3 -151.9 -47.2
BEV 885 243.8 -885.4 -701.2 -664.2 -515.8 -595.2

Consumer Incentive Budget ($) 13,533,928 -0 -0 -0 -0 -0 -0

CO2 Emissions (tons) 728,382 -244.8 507.3 -397.1 -569.4 -402.3 -320.3
(↓0.03%) (↑0.07%) (↓0.05%) (↓0.08%) (↓0.06%) (↓0.04%)

CO2 Damages ($) 37,147,489 -12483.5 25873.7 -20252.0 -29037.2 -20519.3 -16333.6

Notes: This table summarizes results from the counterfactual analysis that examines the market outcomes of alternative consumer incentive
designs, keeping the consumer incentive spending level fixed. Sales, consumer price, consumer incentive, consumer surplus, CO2 emissions,
and CO2 damages are means values across years. We examine various redistribution strategies for the total government spending: only BEVs
(column 1), only PHEVs (column 2), only EV and BEV models above median own-price elasticity (columns 3-4), only EV models with top
North American value-added (column 5) and target low-income population (column 6).
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8.3 Redesign consumer incentive keeping total government spending fixed

Our findings suggest that prioritizing consumer-side incentives is crucial for policymakers aiming

to accelerate the transition to EVs. Therefore, this analysis examines the market outcomes when

redistributing the total state government spending to only consumer subsidies. We evaluate differ-

ent consumer incentive designs through several policy counterfactuals while keeping total spending

constant and comparing the market outcomes to the no-incentive baseline. This counterfactual anal-

ysis maintains several critical assumptions: (1) the total government spending on subsidies remains

fixed, (2) the program’s existing MSRP cap for eligibility is kept unchanged, (3) the market structure

remains unchanged, and (4) the reduction in dealer incentive has no effect on dealer behavior and

EV market outcomes (based on our reduced-form and structural model findings).

Table 10 summarizes the results under various counterfactual policies. The “No Incentive”

column includes market outcomes without EV subsidies. Columns 1 and 2 report market outcomes

when only BEVs or PHEVs are eligible for consumer incentives. Columns 3-4 represent scenarios

where consumer incentives are reallocated to EVs and BEVs, respectively, whose prices consumers

are most sensitive to. Column 5 prioritizes EVs with high North American value-added content,

and column 6 targets EVs with high own-price elasticity among low-income households.

Across all scenarios, the redistribution of incentives leads to an increase in overall EV sales

compared to the “No Incentive” baseline. The most substantial gains are observed in the scenarios

where we target price-elastic EVs and BEVs (columns 3 and 4), where sales rise by 11.9% and

13.31%, respectively. These results highlight the critical role that price sensitivity plays in consumer

adoption of EVs. By concentrating subsidies on EVs with high price elasticity, policymakers can

maximize the adoption of these vehicles, particularly among consumers who are more responsive to

price changes.

In addition to stimulating EV adoption, targeting price-sensitive EVs or BEVs generates positive

environmental outcomes. The most significant reductions in CO2 emissions occur in the price-elastic

BEV-targeting scenario (column 3), with emissions dropping by 1,509 tons (equivalent to $77,005).
Targeting price-elastic EVs also leads to significant improvement in environmental sustainability

(CO2 emission and damages dropping by 1,329 tons and $67,769, respectively)
Columns 5 and 6, which focus on EVs with high North American value-added content and those

targeting low-income households, also lead to decent increases in EV adoption and decreases in CO2

emissions. Furthermore, these approaches not only advance environmental goals but also promote

equity and domestic economic growth by supporting local manufacturing and making EVs more

accessible to under-served communities. Overall, the analysis suggests that more targeted subsidies

drive adoption and yield measurable reductions in emissions, foster economic equity, and contribute

to sustainable domestic growth.
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Table 10: Counterfactual Analysis of Total Incentive Spending Redistribution

Counterfactuals
(1) (2) (3) (4) (5) (6)

No Target Target Price-elastic Price-elastic Top NA Low
Incentive BEVs PHEVs EVs BEVs value-added income

Sales
EV 4,384 447.1 343.6 521.8 539.7 482.2 484.0

(↑10.2%) (↑7.84%) (↑11.9%) (↑13.31%) (↑11%) (↑11.04%)

PHEV 1,616 -0.7 344.7 80.5 -1.0 25.5 78.5
(↓0.04%) (↑21.33%) (↑4.98%) (↓0.06%) (↑1.58%) (↑4.86%)

BEV 2,769 447.7 -1.1 441.3 540.7 456.7 405.5
(↑16.17%) (↓0.04%) (↑15.94%) (↑19.53%) (↑16.49%) (↑14.65%)

Non-EV 121,893 -36.1 -27.2 -43.6 -45.4 -39.0 -39.4

Consumer Price ($)
EV 44,935 -404.5 -791.0 -322.6 -136.4 -218.4 -306.8

(↓0.90%) (↓1.76%) (↓0.72%) (↓0.30%) (↓0.49%) (↓0.68%)

PHEV 43,194 -0.2 -1335.2 -353.2 -0.3 -131.8 -283.7
- (↓3.09%) (↓0.82%) (↓0.001%) (↓0.31%) (↓0.66%)

BEV 46,984 -998.2 -0.1 -253.6 -304.0 -345.1 -319.0
(↓2.12%) - (↓0.54%) (↓0.65%) (↓0.73%) (↓0.68%)

Non-EV 40,733 -0.2 -0.04 -0.2 -0.3 -0.2 -0.2

Consumer Incentive
EV 0 458.8 789 276 104 261 302

PHEV 0 0 1315 321 0 177 288
BEV 0 1177.6 0 194 233 389 306

Total Spending ($) 0 14,424,378 14,424,378 14,424,378 14,424,378 14,424,378 14,424,378

Consumer Surplus ($) 4,427 17.3 13.2 22.2 23.2 19.1 19.7
(↑0.39%) (↑0.30%) (↑0.50%) (↑0.52%) (↑0.43%) (↑0.45%)

CO2 Emissions (tons) 727,447 -1,186.4 -362.5 -1,328.8 -1,509.9 -1,333.3 -1,247.1
(↓0.16%) (↓0.05%) (↓0.18%) (↓0.21%) (↓0.18%) (↓0.17%)

CO2 Damages ($) 37,099,789 -60,509 -18,485 -67,769 -77,005 -67,997 -63,601

Notes: This table summarizes results from the counterfactual analysis that examines the market outcomes of alternative consumer
incentive designs, keeping the total spending level fixed. Sales, consumer price, consumer incentive, consumer surplus, CO2 emissions,
and CO2 damages are means values across years. We examine various redistribution strategies for the total government spending: only
BEVs (column 1), only PHEVs (column 2), only EV and BEV models above median own-price elasticity (columns 3-4), only EV models
with top North American value-added (column 5) and target low-income population (column 6).

39



9 Conclusion

This paper provides new evidence on the distinct effects of consumer and dealer subsidies in the

electric vehicle (EV) market. The results imply that statutory incidence plays a crucial part in

shaping the economic incidence of EV subsidies. Our reduced-form model results show that con-

sumer subsidies are significantly more effective at maximizing EV adoption than dealer subsidies.

Specifically, a substantial portion of consumer subsidies are passed through to buyers, resulting in

higher EV sales. On the other hand, dealer subsidies have little to no impact on either EV prices or

adoption.

Our structural model for new vehicle purchase, accounting for both demand- and supply-side

responses in equilibrium, supports the findings from the reduced-form analysis. We find that dealers

react as if their marginal cost had decreased by 3% for every thousand-dollar increase in consumer

subsidies. However, dealer subsidies fail to induce similar responses from dealerships. This result

could be due to insufficient magnitude, limited salience, or asymmetric information on dealer subsi-

dies. These findings reveal that dealers are more responsive to demand-side incentives, highlighting

the effectiveness of targeting subsidies directly at buyers.

Our counterfactual analyses explore how different subsidy designs could optimize EV adoption

and environmental benefits under a fixed government spending level. We find that reallocating

subsidies to battery electric vehicles (BEVs) and price-elastic EV models significantly increases

adoption and leads to more significant reductions in carbon emissions. Additionally, policymakers

could consider targeting EVs with high North American value-added and low-income households to

achieve broader policy objectives, such as promoting equity and supporting domestic manufacturing

while maximizing adoption and environmental benefits.

This paper illustrates how targeted consumer subsidies—whether directed at BEVs, price-sensitive

or domestic models, or low-income households—can be more effective at optimizing vehicle adop-

tion and emission reduction. These insights offer practical guidance for subsidy programs for green

technology in the U.S. and other countries seeking to accelerate the adoption of environmentally

friendly innovations and the energy transition.
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Table A1: Decomposition Effects - Counterfactual 1: Targeting BEVs

Status Total Change from subsidy Difference
quo change decrease for PHEV

Marginal Cost ($)
EV 38,236 0.04% 0.35% -0.32%

PHEV 36,682 0.61% 0.61% 0%
BEV 40,014 -0.73% 0% -0.73%

Consumer Price ($)
EV 44,541 0.03% 0.31% -0.28%

PHEV 42,968 0.52% 0.52% -0.0002%
BEV 46,341 -0.64% 0.00002% -0.64%

Non-EV 40,733 -0.0002% -0.000002% -0.0002%

Sales
EV 4,720 1.66% -1.72% 3.38%

PHEV 1,697 -4.82% -4.80% -0.02%
BEV 3,023 5.30% 0.01% 5.29%

Non-EV 121,868 -0.007% 0.005% -0.012%

Consumer Incentive ($)
EV 537 -98 -197 98.76

PHEV 320 -320 -320 0
BEV 885 244 0 243.83

Consumer Incentive Spending ($)
EV 13,533,928 -0.98 -4,241,648 4,241,647

PHEV 4,241,648 -4,241,648 -4,241,649 1.00
BEV 9,292,280 4,241,647 0 4,241,647

Notes: This table reports the decomposition effects for counterfactual 1, where consumer subsidies are targeted
toward BEVs. The “Change from subsidy decrease for PHEV” column reports the changes in market outcomes
(compared to the status quo) when consumer subsidies for PHEVs reduce to 0. The “Total change” column
reports the changes in market outcomes (compared to the status quo) when consumer subsidies for PHEVs are
reduced to 0. The spending on PHEVs is then distributed among eligible BEVs. The difference between these
two effects is reported in the last column.
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Table A2: Decomposition Effects - Counterfactual 2: Targeting PHEVs

Status Total Change from subsidy Difference
quo change decrease for BEV

Marginal Cost ($)
EV 38,236 -0.89% 0.66% -1.56%

PHEV 36,682 -2.75% 0% -2.75%
BEV 40,014 1.58% 1.58% 0%

Consumer Price ($)
EV 44,541 -0.78% 0.58% -1.35%

PHEV 42,968 -2.38% 0.0002% -2.38%
BEV 46,341 1.39% 1.39% 0%

Non-EV 40,733 0.00005% 0.0001% -0.00005%

Sales
EV 4,720 -0.30% -5.39% 5.09%

PHEV 1,697 14.23% 0.02% 14.21%
BEV 3,023 -8.46% -8.43% -0.03%

Non-EV 121,868 -0.0001% 0.016% -0.016%

Consumer Incentive ($)
EV 537 206 -340 546

PHEV 320 918 0 918
BEV 885 -885 -885 0

Consumer Incentive Spending ($)
EV 13,533,928 -1 -9,292,280 9,292,279

PHEV 4,241,648 9,292,279 0 9,292,279
BEV 9,292,280 -9,292,280 -9,292,280 0

Notes: This table reports the decomposition effects for counterfactual 2, where consumer subsidies are targeted
toward PHEVs. The “Change from subsidy decrease for BEV” column reports the changes in market outcomes
(compared to the status quo) when consumer subsidies for BEVs reduce to 0. The “Total change” column reports
the changes in market outcomes (compared to the status quo) when consumer subsidies for BEVs are reduced to
0. The spending on BEVs is then distributed among eligible PHEVs. The difference between these two effects is
reported in the last column.
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Table A3: Decomposition Effects - Counterfactual 3: Targeting Top Price-Elastic EVs

Status Total Change from subsidy decrease Difference
quo change for non-targeted EVs

Marginal Cost ($)
EV 38,236 0.23% 0.62% -0.40%

PHEV 36,682 -0.29% 0.32% -0.62%
BEV 40,014 0.99% 1.07% -0.08%

Consumer Price ($)
EV 44,541 0.20% 0.54% -0.34%

PHEV 42,968 -0.25% 0.28% -0.53%
BEV 46,341 0.87% 0.94% -0.07%

Non-EV 40,733 -0.0004% -0.00001% -0.00038%

Sales
EV 4,720 3.30% -2.37% 5.67%

PHEV 1,697 -0.31% -2.69% 2.38%
BEV 3,023 5.33% -2.20% 7.53%

Non-EV 121,868 -0.013% 0.007% -0.020%

Consumer Incentive ($)
EV 537 -275 -397 122

PHEV 320 -16 -211 195
BEV 885 -701 -712 11

Consumer Incentive Spending ($)
EV 13,533,928 0 -6,313,804 6,313,804

PHEV 4,241,648 -1,554,849 -2,892,500 1,337,651
BEV 9,292,280 1,554,849 -3,421,304 4,976,153

Notes: This table reports the decomposition effects for counterfactual 3, where consumer subsidies are targeted toward
top price-elastic EVs. The “Change from subsidy decrease for non-targeted EVs” column reports the changes in market
outcomes (compared to the status quo) when consumer subsidies for non-targeted EV models reduce to 0. The “Total
change” column reports the changes in market outcomes (compared to the status quo) when consumer subsidies for non-
targeted EVs are reduced to 0. The spending on these vehicles is then distributed among top price-elastic EVs. The
difference between these two effects is reported in the last column.
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Table A4: Decomposition Effects - Counterfactual 4: Targeting Top Price-Elastic BEVs

Status Total Change from subsidy decreases Difference
quo change for non-target EVs (%)

Marginal Cost ($)
EV 38,236 0.68% 0.79% -0.10%

PHEV 36,682 0.61% 0.61% 0%
BEV 40,014 0.87% 1.07% -0.20%

Consumer Price ($)
EV 44,541 0.59% 0.68% -0.09%

PHEV 42,968 0.52% 0.52% 0%
BEV 46,341 0.76% 0.94% -0.17%

Non-EV 40,733 -0.0005% -0.000004% -0.00048%

Sales
EV 4,720 3.67% -3.13% 6.80%

PHEV 1,697 -4.84% -4.79% -0.05%
BEV 3,023 8.45% -2.19% 10.64%

Non-EV 121,868 -0.014% 0.009% -0.02%

Consumer Incentive ($)
EV 537 -439 -463 25

PHEV 320 -320 -320 0
BEV 885 -664 -712 48

Consumer Incentive Spending ($)
EV 13,533,928 0 -7,662,952 7,662,952

PHEV 4,241,648 -4,241,648 -4,241,648 0
BEV 9,292,280 4,241,648 -3,421,304 7,662,952

Notes: This table reports the decomposition effects for counterfactual 4, where consumer subsidies are targeted toward
top price-elastic BEVs. The “Change from subsidy decrease for non-targeted EVs” column reports the changes in market
outcomes (compared to the status quo) when consumer subsidies for non-targeted EV models reduce to 0. The “Total
change” column reports the changes in market outcomes (compared to the status quo) when consumer subsidies for non-
targeted EVs are reduced to 0. The spending on these vehicles is then distributed among top price-elastic BEVs. The
difference between these two effects is reported in the last column.
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Table A5: Decomposition Effects - Counterfactual 5: Targeting Top North-American Value-Added
EVs

Status Total Change from subsidy Difference
quo change decrease for non-target EVs

Marginal Cost ($)
EV 38,236 0.48% 0.53% -0.05%

PHEV 36,682 0.27% 0.46% -0.19%
BEV 40,014 0.78% 0.61% 0.16%

Consumer Price ($)
EV 44,541 0.42% 0.47% -0.05%

PHEV 42,968 0.23% 0.39% -0.16%
BEV 46,341 0.68% 0.54% 0.14%

Non-EV 40,733 -0.0003% 0.00001% -0.00031%

Sales
EV 4,720 2.52% -2.29% 4.81%

PHEV 1,697 -3.36% -3.98% 0.62%
BEV 3,023 5.82% -1.34% 7.16%

Non-EV 121,868 -0.009% 0.006% -0.02%

Consumer Incentive ($)
EV 537 -290 -294 5

PHEV 320 -152 -234 82
BEV 885 -516 -385 -131

Consumer Incentive Spending ($)
EV 13,533,928 0 -5,317,230 5,317,230

PHEV 4,241,648 -3,099,916 -3,505,228 405,312
BEV 9,292,280 3,099,916 -1,812,002 4,911,918

Notes: This table reports the decomposition effects for counterfactual 5, where consumer subsidies are targeted toward
top North-American (NA) value-added. The “Change from subsidy decrease for non-targeted EVs” column reports the
changes in market outcomes (compared to the status quo) when consumer subsidies for non-targeted EV models reduce
to 0. The “Total change” column reports the changes in market outcomes (compared to the status quo) when consumer
subsidies for non-targeted EVs are reduced to 0. The spending on these vehicles is then distributed among top NA
value-added. The difference between these two effects is reported in the last column.

48



Table A6: Decomposition Effects - Counterfactual 6: Targeting Low-income Population

Status Total Change from subsidy Difference
quo change decrease for non-target EVs

Marginal Cost ($)
EV 38,236 0.27% 0.42% -0.15%

PHEV 36,682 -0.12% 0.28% -0.40%
BEV 40,014 0.84% 0.66% 0.18%

Consumer Price ($)
EV 44,541 0.23% 0.36% -0.13%

PHEV 42,968 -0.10% 0.24% -0.34%
BEV 46,341 0.73% 0.58% 0.16%

Non-EV 40,733 -0.0002% -0.00001% -0.00019%

Sales
EV 4,720 2.55% -1.66% 4.21%

PHEV 1,697 -0.41% -2.51% 2.10%
BEV 3,023 4.22% -1.17% 5.39%

Non-EV 121,868 -0.010% 0.004% -0.014%

Consumer Incentive ($)
EV 537 -251 -296 45

PHEV 320 -47 -190 143
BEV 885 -595 -497 -98

Consumer Incentive Spending ($)
EV 13,533,928 0 -4,803,559 4,803,559

PHEV 4,241,648 -1,440,089 -2,771,000 1,330,911
BEV 9,292,280 1,440,090 -2,032,559 3,472,649

Notes: This table reports the decomposition effects for counterfactual 6, where consumer subsidies are targeted toward
EVs with high own-price elasticity among low-income households. The “Change from subsidy decrease for non-targeted
EVs” column reports the changes in market outcomes (compared to the status quo) when consumer subsidies for non-
targeted EV models reduce to 0. The “Total change” column reports the changes in market outcomes (compared to
the status quo) when consumer subsidies for non-targeted EVs are reduced to 0. The spending on these vehicles is then
distributed among EVs with high own-price elasticity among low-income households. The difference between these two
effects is reported in the last column.
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11 Appendix - Figures

Figure A1: Empirical CDF of Own-Price Elasticity
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Figure A2: Difference between Observed Data and Simulated Data

(a) Prices

(b) Shares

Note: Figures show the difference between the observed data and simulated data using demand and supply estimates

51



Figure A3: CHEAPR consumer subsidy assignment (Source: Johnson et al. (2016))

52



Figure A4: CHEAPR Overview Information Flyer (Source: CHEAPR (2023))
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Figure A5: Dealer Incentive Briefly Mentioned in the Program Implementation Manual (Source:
CHEAPR (2024))
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